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Abstract 1 

Behavioral economic demand methodology is increasingly being used in various fields 2 

such as substance use and consumer behavior analysis. Traditional analytical techniques to 3 

fitting demand data have proven useful yet some of these approaches require preprocessing of 4 

data, ignore dependence in the data, and present statistical limitations. We term these approaches 5 

“fit to group” and “two stage” with the former interested in group or population level estimates 6 

and the latter interested in individual subject estimates. As an extension to these regression 7 

techniques, mixed-effect (or multilevel) modeling can serve as an improvement over these 8 

traditional methods. Notable benefits include providing simultaneous group (i.e., population) 9 

level estimates (with more accurate standard errors) and individual level predictions while 10 

accommodating the inclusion of ‘nonsystematic’ response sets and covariates. These models can 11 

also accommodate complex experimental designs including repeated measures. The goal of this 12 

paper is to introduce and provide a high-level overview of mixed-effects modeling techniques 13 

applied to behavioral economic demand data. We compare and contrast results from traditional 14 

techniques to that of the mixed-effects models across two datasets differing in species and 15 

experimental design. We discuss the relative benefits and drawbacks of these approaches and 16 

provide access to statistical code and data to support the analytical replicability of the 17 

comparisons. 18 

 19 

Keywords: behavioral economics; demand; mixed-effects model; multilevel model; operant; 20 

behavioral science; purchase task; R programming language  21 



MIXED-MODEL DEMAND 

 3 

Introduction 1 

The concept of behavioral economic demand (hereafter referred to simply as demand) has 2 

proven useful in a variety of settings including drug addiction (Acuff et al., 2020; Aston & 3 

Cassidy, 2019; González-Roz et al., 2019; Kaplan et al., 2018; Strickland, Campbell, et al., 2020, 4 

2020; Strickland & Lacy, 2020), public policy (Hursh & Roma, 2013), health behaviors (Bickel 5 

et al., 2016), and others (Gilroy, Kaplan, & Leader, 2018; Hayashi et al., 2019; Henley et al., 6 

2016; Kaplan et al., 2017; Reed et al., 2016; Strickland, Marks, et al., 2020; Yates et al., 2019). 7 

Demand has been evaluated in a both humans and nonhuman animals (Bentzley et al., 2012; 8 

Fragale et al., 2017; Strickland & Lacy, 2020). Methods for elucidating trends in consumption 9 

and demand have included experiential self-administration (Johnson & Bickel, 2006) and 10 

hypothetical responding (Strickland, Campbell, et al., 2020). 11 

The economic concept of demand characterizes the relationship between the consumption 12 

or purchasing of a substance or commodity and some constraint, such as price (Reed et al., 13 

2013). In nonhuman animal self-administration work, demand is captured by (i) increasing the 14 

ratio requirement necessary to obtain the reinforcer, and/or (ii) decreasing the dose of the 15 

reinforcer while keeping the response requirement constant. This ratio of cost (e.g., responses) to 16 

benefit (e.g., drug obtained) is referred to as unit price1. In human work, participants may self-17 

administer or endorse their hypothetical consumption of the reinforcers (e.g., alcoholic drinks, 18 

cigarettes) across a range of prices. This latter approach is commonly referred to as a 19 

Hypothetical Purchase Task (Roma et al., 2015). In behavioral economics rooted in the operant 20 

framework, the relation between reinforcer price and consumption typically follows a nonlinear 21 

relationship, where increments in low prices are met with relatively little change in consumption 22 

 
1 Although we acknowledge the differences between consumption and purchasing and between price and unit price, 
for simplicity we will refer to consumption as the primary dependent variable and price as the independent variable. 



MIXED-MODEL DEMAND 

 4 

and relatively more rapid declines in consumption are observed as prices increase (see Figure 1). 1 

A core aspect resulting from fitting a function to the demand curve is the rate of change in 2 

elasticity, where elasticity is the proportional change in consumption relative to a proportional 3 

change in price (Gilroy, Kaplan, & Reed, 2020). 4 

An in-depth discussion of the various metrics the demand curve provides and their 5 

associations with clinical measures is beyond the scope of this paper. For further discussion, we 6 

encourage readers to consult other texts (e.g., González-Roz et al., 2019, Kaplan et al., 2019, 7 

Martinez-Loredo et al., 2021, Reed, Niileksela, & Kaplan, 2013). Here, we will note that change 8 

in elasticity is one of several different metrics that a demand curve provides, along with 9 

intensity, Pmax, Omax, and breakpoint. Whereas change in elasticity is necessarily derived based 10 

on the results of regression, intensity, which represents the level of consumption at free or near 11 

free costs, can be derived either by regression or by observing the data directly (e.g., how many 12 

drinks would someone take if they were free). Breakpoint, or the first price at which nothing is 13 

consumed (either by self-report or by not earning the reinforcer) is most often observed directly 14 

from the data but can be derived using some equations (e.g., Zhao et al., 2016). Finally, Omax 15 

(i.e., maximum expenditure across all the prices) and Pmax (i.e., either the price associated with 16 

Omax or the price at which the demand curve shifts from an inelastic to elastic portion) can be 17 

observed from the data directly (e.g., finding the maximum expenditure among the prices tested) 18 

or derived (e.g., via exact solution, Gilroy et al., 2019). Because breakpoint, Omax, and Pmax are 19 

easily obtained from the data and by existing tools (e.g., Gilroy et al., 2019, Kaplan et al., 2019; 20 

http://www.behavioraleconlab.com/resources---tools.html) and do not fundamentally differ due 21 

to differences in statistical fitting techniques, the analyses presented here will focus on the two 22 

primary indices generated from the demand curve: intensity and change in elasticity. 23 
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[FIGURE 1] 1 

Just as there is variability in how demand is collected, there is variability in how demand 2 

is analyzed (Kaplan et al., 2018; Reed et al., 2020) and demand is typically analyzed in one of 3 

two ways. The first approach is to fit a demand model to the overall group-level consumption. 4 

We call this the “fit-to-group” approach (see Table 1). The second “two-stage” approach is to fit 5 

a demand model separately to each individual dataset (stage 1) and use the resulting individual-6 

subject demand parameter estimates in subsequent analyses (stage 2). The “fit-to-group” 7 

approach is shown in the top panel of Figure 1 and the “two-stage” approach is shown in the 8 

bottom panel of Figure 1. Whereas these approaches are relatively easy to execute, both methods 9 

have limitations that behavioral economists conducting this research should be aware of and we 10 

will describe the relative benefits and limitations later in this paper. To overcome some of these 11 

limitations, recent efforts in behavior analysis (Bottini et al., 2020; DeHart & Kaplan, 2019; 12 

Gilroy & Kaplan, 2020) and behavioral economics (Acuff et al., 2021; Collins et al., 2014; 13 

Hofford et al., 2016; Kaplan et al., 2020; Liao et al., 2013; Powell et al., 2020; Strickland et al., 14 

2016; Young, 2017; Zhao et al., 2016) have been made to encourage the use of mixed-effects 15 

models (i.e., mixed-models, multilevel models), which is a modeling approach that integrates the 16 

relative advantages of these two approaches into a single stage analysis. However, we are not 17 

aware of any accessible materials specifically tailored for behavioral economists for 18 

implementing the mixed-effects modeling approach for behavioral economic demand. 19 

[TABLE 1] 20 

As a result, the goal of the current article is to provide an easily accessible introduction 21 

and overview to mixed-effects models in studies of operant demand. A more in-depth discussion 22 

regarding the relative merits of the mixed-model approach in demand, including quantitative 23 
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comparisons can be found in Yu et al. (2014) and others (Collins et al., 2014; Zhao et al., 2016). 1 

In the current paper, we will first discuss the nonlinear approach to fitting demand curve data and 2 

introduce important terminology and concepts (see Table 1). Then, we will orient readers to a 3 

previously published human hypothetical Alcohol Purchase Task dataset (Kaplan & Reed, 2018) 4 

consisting of a single sample of participants under one experimental condition. Using this 5 

dataset, we will illustrate the two common approaches to fitting demand curve data and discuss 6 

their relative benefits and limitations. Then, we will provide an overview of nonlinear mixed-7 

effects modeling and apply this approach to the dataset, comparing and contrasting with the 8 

earlier approaches. We will then extend these analyses to a nonhuman dataset (Koffarnus et al., 9 

2012) with one sample of monkeys who each self-administered a series of drugs and other 10 

reinforcers. Throughout we will conduct the analyses in the open-source R statistical software (R 11 

Core Team, 2020). To facilitate open-source documentation (Gilroy & Kaplan, 2019), data and 12 

code to perform these analyses can be found at the corresponding author’s GitHub repository2. 13 

That is, all data and code necessary to reproduce the contents of this document, as well as 14 

additional figures and tables, are available as an R Markdown document (i.e., a document 15 

containing both text and code which can then be rendered into other document types) in the 16 

GitHub repository. Whereas this article will remain static, the R Markdown document will be 17 

updated occasionally based on advances and improvements in the R statistical software. We 18 

encourage interested readers to consult and interact with this R Markdown document. 19 

In sum, we hope this paper will provide readers a high-level understanding of traditional 20 

approaches to analyzing demand curve data and limitations associated with those techniques, 21 

while also helping readers understand how mixed-effects modeling can enhance and help move 22 

 
2 https://github.com/brentkaplan/mixed-effects-demand 
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towards best practices in demand analysis. Although we do not expect all readers will 1 

spontaneously start conducting all their demand analyses within a mixed-model methodology, 2 

we hope this paper might also help readers be able to better evaluate demand analyses. In 3 

addition, for those researchers who rely on or work closely with statisticians in their work, this 4 

paper and the associated R Markdown document may serve as an excellent resource for their 5 

collaborators. This paper, however, is not a strict tutorial on how to implement mixed-effects 6 

models nor on how to get started with the R statistical software3. Those who have some 7 

familiarity with R will benefit greatly from executing the code line-by-line in the associated R 8 

Markdown document. 9 

Nonlinear Fitting of Demand Curve Data 10 

Demand data are often fitted with a nonlinear exponential decay model using ordinary 11 

least squares regression (see Gilroy, Kaplan, Reed, et al., 2018; Table 1), which estimates 12 

parameter values (values that we do not know but wish to estimate with the collected data) by 13 

minimizing the squared difference between observed consumption values and the predicted 14 

consumption values4. The differences between the observed and predicted data are referred to as 15 

the residuals. Due to the increasing use of hypothetical purchase tasks where zero values are 16 

often observed, the following nonlinear model (Koffarnus et al., 2015) has proven useful in 17 

characterizing these data: 18 

𝑄! = 𝑄" ⋅ 10#(%
!"#$%&&') + 𝜀! , 𝑗 = 1, . . . , 𝑘 19 

 
3 We recommend new users of R who are interested in analyzing demand curve data read the paper by Kaplan et al. 
(2019) and the associated document “Introduction to R and beezdemand” available at: 
https://github.com/brentkaplan/beezdemand/tree/master/pobs. This document contains beginner steps for using R 
and recommended resources for learning R’s basic functionality. 
4 Later, we introduce how mixed-effects models are estimated within a frequentist paradigm using maximum-
likelihood estimation. For a brief overview of maximum-likelihood estimation, see the Appendix. 



MIXED-MODEL DEMAND 

 8 

where 𝑄! represents quantity of the commodity purchased/consumed at the 𝑗-th price point and 1 

𝐶! is the 𝑗-th price, and these are known from the data. This model estimates 𝑄", representing 2 

unconstrained purchasing when 𝐶! = $0.00 (i.e., the intercept), and 𝛼, representing the rate of 3 

change in elasticity across the demand curve (i.e., most analogous to a slope parameter; see 4 

Gilroy et al. (2020) for more on the interpretation of elasticity in operant demand). The term 𝑘 5 

represents the range of data (e.g., quantities purchased) in logarithmic units and can be solved as 6 

a fitted parameter or can be set as a constant by determining a priori an appropriate range. The 7 

model is structured as an exponential decay function so the 𝑘 parameter restricts the range of 8 

consumption to a specific lower non-zero asymptote. Finally, the error (𝜀) term5 is assumed to be 9 

normally distributed with mean of 0 and variance of 𝜎). We use this model for illustrative 10 

purposes only in this introduction, although mixed-effects models can be implemented on the 11 

demand model of the user’s choice (e.g., Yu et al., 2014; Gilroy et al., 2021; Liao et al., 2013), 12 

including the nonlinear model from which the above model was formulated (Hursh & Silberberg, 13 

2008). To be clear, the purpose of this introduction is not to compare different quantitative or 14 

conceptual models. The purpose of this paper is to provide a high-level overview of different 15 

statistical fitting techniques regardless of the model chosen. Readers are directed towards 16 

Strickland et al. (2016), Fragale et al. (2017), and Gilroy et al. (2021) for additional information 17 

regarding how different models perform.    18 

Example Application: Human Hypothetical Purchase Task 19 

Dataset 20 

 
5 A reader might notice that the model formulations as described in Hursh & Silberberg (2008) and Koffarnus et al. 
(2015) lack an explicit error term. Error terms are useful because they probabilistically describe the manner in which 
data depart from the regression line. Naturally, regression lines do not perfectly pass through observed data, 
regardless of whether the error term is made explicit in the description of the model. See Table 1 entry “error 
variance.” 
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The dataset is from Kaplan and Reed (2018) in which participants completed a 1 

hypothetical Alcohol Purchase Task (APT; Kaplan et al., 2018). A total of 1100 participants 2 

initially completed the task in full (four participants were excluded for missing data). An 3 

additional 108 participants were not included because they had less than three positive 4 

consumption values. The APT consisted of 17 prices, expressed as price per drink ($0.00, $0.25, 5 

$0.50, $1.00, $1.50, $2.00, $2.50, $3.00, $4.00, $5.00, $6.00, $7.00, $8.00, $9.00, $10.00, 6 

$15.00, and $20.00). Participants reported how many alcoholic drinks they would purchase and 7 

consume at each of the 17 prices. 8 

Systematicity 9 

Stein and colleagues (Stein et al., 2015) proposed three criteria by which to suggest 10 

demand data are systematic. These criteria include 1) trend, 2) bounce, and 3) reversals from 11 

zero. We applied these criteria to the data for identifying unsystematic response patterns. 12 

Overall, data were highly systematic with a total of 148 unique participants failing at least one of 13 

the criteria. Although in typical approaches to analyzing demand these unsystematic responses 14 

may be excluded, we will include these cases to demonstrate the robustness of the mixed-model 15 

estimates of 𝑄" and 𝛼. Although we recommend researchers screen for systematicity and report 16 

these numbers, ultimately the researcher must determine whether to retain these participant 17 

datasets in a mixed-effects model analysis. One approach we recommend is to analyze the data 18 

including all participants and compare these results to the subset of data which pass the criteria to 19 

determine whether the removal of nonsystematic data alters the interpretation of results (Young, 20 

2017). 21 

Common Approaches to Analyzing Demand Curve Data 22 
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In our experience with the literature, there are two primarily common ways to analyze 1 

demand curve data. These approaches are differentiated by whether the study is interested in 2 

inferring what is common across individuals (fit-to-group approach) or is interested in inferring 3 

the degrees and causes of variation among the individuals (two-stage approach). Said another 4 

way, the former approach is primarily concerned with making generalizations about the broader 5 

“population” (as defined in each experiment) whereas the latter approach is primarily concerned 6 

with individual trends. 7 

Fit-to-Group Approach 8 

We have observed two ways in which researchers fit a single curve to the overall group 9 

when they are interested in making population-level inferences. In the interest of full clarity and 10 

recommendation that researchers specify their method of analysis in future research, we name 11 

and distinguish these two ways. However, both of these approaches treat variability in the data 12 

incorrectly and thus produce inaccurate measures of precision (i.e. standard errors) for 13 

estimators, which leads to misleading and/or incorrect statistical inference. 14 

Fitting to means. The first method relies on averaging individual participant responses 15 

within a group at each price, then fitting a single curve through the series of price-specific group 16 

means (e.g., Hursh & Silberberg, 2008). This method, therefore, fits a curve to n data points, 17 

where n equals the number of prices. By replacing the full data with a series of sample means, 18 

overall variability in the data is overlooked. This replacement leads to unrealistic standard errors 19 

that are typically much smaller than appropriate. This method can result in astonishingly high R2 20 

values (≥ .97), but the “excellent fits” are an outcome of the substantially reduced variability 21 

(e.g., see Kaplan, Gelino, & Reed, 2018; Hursh & Silberberg, 2008). Thus, this method is not 22 
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appropriate for statistical inference and is suitable for descriptive, graphical, and theoretical 1 

equation testing (e.g., Hursh & Silberberg, 2008) purposes only. 2 

Pooling data. The second method relies on “pooling” all participant data together and 3 

fitting a single curve through n * k data points, where n equals the number of prices and k equals 4 

the number of participants. This method implicitly assumes all data points (even those gathered 5 

on the same individual) are independent, which is not realistic. This implicit assumption of 6 

independence among all data is not reasonable and leads to incorrect standard errors for 7 

estimators. 8 

These two methods of the fit-to-group approach typically result in nearly identical point 9 

estimates (e.g., 𝑄", 𝛼) but differ in the size of the estimates’ standard errors and the model’s 10 

residual standard error (i.e., the amount of information “left over” and not accounted for by the 11 

model). It is important to recognize that neither of these approaches furnish correct, realistic 12 

statistical inference, but fortunately the next two approaches work better. For the purposes of this 13 

paper when we refer to the “fit-to-group” approach we are referring to the “pooling” method 14 

(i.e., we fit the model to n * k data points), which retains all individual subject data. At the time 15 

of this writing, this pooled method is the default in GraphPad Prism (GraphPad Software, San 16 

Diego, California USA, www.graphpad.com), a common curve-fitting program used by 17 

behavioral economists. In the R package beezdemand (Kaplan et al., 2019), the user must specify 18 

the method in which they want the data aggregated (e.g., “mean” or “pooled”). 19 

Illustration of the Fit-to-Group Approach. The current Alcohol Purchase Task dataset 20 

is comprised of only one group; therefore this approach will yield one 𝑄" and one 𝛼 for the entire 21 

sample (i.e., population-level fixed effect; see Table 1). No individual-specific parameters can be 22 

estimated using this approach. Visually, we can see the results of this method in Figure 2. The 23 
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left panel shows the overall fit from this model in red along with the observed individual 1 

responses and the vertical lines at each price represent the interquartile range (the middle 50% of 2 

the data). The right panel displays a subset of individual participants and their responses. Note 3 

how the red lines (the prediction from the model) are identical across individual participant plots 4 

because this method only returns population-level estimates of 𝑄" and 𝛼. 5 

[FIGURE 2] 6 

Benefits and Limitations of the Fit-to-Group Approach. A benefit to preprocessing 7 

data into means prior to curve fitting is that no data need to be necessarily excluded. Participants 8 

who report zero consumption (incompatible with the log scale of analysis in some equations) can 9 

still be included as curves are fit to the averaged data, so long as some participants in the sample 10 

have greater than zero consumption. Typically, convergence (i.e., the state when the fitting 11 

algorithm obtains a set of parameter estimates based on some predefined threshold) is more 12 

easily achieved when the model is fit to averaged consumption data or using the pooled method, 13 

effectively smoothing abrupt transitions from one price to the next, which is a response pattern 14 

sometimes observed at the individual level (e.g., see “Median 𝛼” plot in Figure 2). 15 

Notwithstanding these benefits, this approach is limited (beyond the statistical issues we outlined 16 

above) in that all participants share the same 𝑄" and 𝛼 values and as such, participant-level 17 

comparisons cannot be conducted. This approach does not allow for investigations into how 18 

participant-specific demand parameters may relate to other factors (e.g., response to treatment, 19 

demographic variables). In addition, any inferences made at the group level should not be 20 

assumed to hold true at the individual level, as this is known as the “ecological fallacy” 21 

(Robinson, 1950). 22 

Two-Stage Approach 23 
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The second commonly used approach is to fit a regression model to each participant. 1 

Unlike the fit-to-group approach, the two-stage approach does not try and fit the average 2 

response pattern over all participants. Rather, subject-specific 𝑄" and 𝛼 values are estimated in 3 

the first stage. The second stage is to make inferences about variation in the fitted 𝛼0 and 𝑄"1  4 

values using other statistical tests such as t-tests, analysis of variance, or even mixed-effects 5 

models. 6 

Illustration of the Two-Stage Approach. For this dataset (992 participants), a total of 7 

935 demand curves were able to be fit, each resulting in a 𝑄"1 and an 𝛼0 value. Unique to the two-8 

stage approach is that occasionally (depending on the task and participant sample) certain 9 

participant’s data are especially difficult or unable to be fit using operant demand models. The 10 

failure to converge may be due to relatively few positive consumption values, that these data do 11 

not follow the “typical” downward sloping function, or that starting values are not appropriately 12 

identified. As a result, a total of 57 participants’ data were excluded from this analysis. The left 13 

panel of Figure 3 depicts the individual fits to a subset of participants’ data. Contrast Figure 3 14 

with Figure 2. Whereas this two-stage approach will typically result in predicted lines fitting 15 

closest to the data (compared to other approaches), such predictions may not be “generalizable” 16 

to either other participants (or individuals in a population) or other experimental conditions. That 17 

is, relatively more parameter fits are being conducted than what is necessary. This lack of 18 

generalizability is partly due to the model being optimized to a small amount of data relative to 19 

what else is “known” in the experiment (e.g., do other participants respond in similar ways to an 20 

experimental manipulation, do participants tend to respond more similarly to their own other 21 

responses regardless of other experimental manipulations). 22 

[FIGURE 3] 23 
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Benefits and Limitations of the Two-Stage Approach. A benefit of the two-stage 1 

approach is that demand parameters at the individual participant level can be obtained and used 2 

for downstream (i.e., stage 2) comparisons. Several limitations are associated with this approach. 3 

One limitation is that demand parameters may be either very difficult to estimate or not 4 

estimable for some participants with sparse data (e.g., only one or two positive consumption 5 

values) or with extreme “step” response patterns with abrupt decreases in consumption from one 6 

price to the next. These exclusions limit the scope of inference to those individuals at least 7 

somewhat described by the model. That is, if derived parameter values (𝑄" and 𝛼) from response 8 

patterns that do not follow the “typical” downward sloping function are not able to be estimated 9 

using traditional fitting algorithms, then downstream comparisons will be limited to a subset of 10 

the overall sample (this limit of scope is similar to when data that only meet systematic inclusion 11 

criteria [Stein et al., 2015] are included in an analysis). Another limitation is that individual 𝑄" 12 

and 𝛼 are treated as perfectly accurate estimates with no error when these parameters are used in 13 

subsequent statistical tests. Naturally, the first stage model fits are imperfect, yet none of this 14 

uncertainty carries forward to the second stage of analysis. Any second stage analysis will 15 

assume the participant-specific demand parameters provided are known with complete certainty 16 

and this will provide inaccurate estimates of associated standard errors. This approach also 17 

disregards intrasubject correlations across experimental conditions, which can also affect the 18 

estimates in subsequent analyses unless special care is taken to model these correlations. 19 

Intrasubject correlation refers to the association shared between data points collected within the 20 

same subject and is a commonly observed phenomenon in repeated measures studies. This “two-21 

stage” approach - where demand parameters are obtained in the first step and compared in a 22 

separate, second step - may result in biased conclusions and generalizability may be 23 
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compromised. This approach also lacks philosophical appeal since there is no overarching model 1 

that relates individual subject parameter estimates to the population average that are of interest to 2 

researchers. 3 

Each of these two approaches discussed have their relative benefits and drawbacks. An 4 

ideal method of incorporating the benefits of each approach would be conducted in a single 5 

stage, use all available data, incorporate covariates and experimental factors (which are usually 6 

only addressed at the second stage), and result in “population” level estimates (see Table 1) 7 

while also providing individual level predictions and accounting for intrasubject correlation. The 8 

mixed-effects modeling approach we describe next has precisely these characteristics. 9 

Mixed-Effects Models 10 

Several key concepts related to the mixed-effects modeling approach need to be 11 

discussed. Recall in the fit-to-group approach, we referred to the resulting group-level estimates 12 

“fixed effects” because they are considered common to all individuals within a group and thus 13 

invariant within the observational unit (i.e., participant). At the highest degrees of generality, 14 

fixed effects may describe the underlying population structure and do not vary from one 15 

individual to the next. 16 

A random effect is a model term that varies from one individual or sub-group to the next. 17 

To model this variation, random effects are governed by probability distributions. These random 18 

effects can be thought of as deviations around population level fixed effects. By specifying 19 

random effects on model parameters (𝑄", 𝛼), we allow a given participant to deviate relatively 20 

higher or relatively lower around the population average fixed effects. On average, these 21 

random-effect deviations will equal 0, which is just a different way of saying that on average, the 22 

individual estimates will equal the population level estimates. 23 
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The mixed-model approach introduces the ideas of shrinkage and partial pooling, which 1 

come into play when the dataset contains values unusually far from the average. For example, 2 

suppose a participant in our dataset shows much higher consumption compared to many other 3 

participants in the group. In the two-stage approach, the estimated parameters for this participant 4 

will be far from the average. While this may certainly be a valid dataset and response pattern, 5 

unusually high (or low) values inflate estimates of individual error variance. The inflated error 6 

introduces greater uncertainty the individual’s parameter estimates, which in turn inflates 7 

uncertainty in downstream analyses of individual variation in those parameters. In this way, error 8 

propagates through each step of the analysis, resulting in confidence intervals of second stage 9 

estimates that do not accurately reflect error variance from the first stage. Importantly, if no 10 

additional steps are taken to integrate error over each step, then estimates of the confidence 11 

intervals and other inferential statistics are likely to be incorrect. Rather, in a mixed-model 12 

approach, information from the entire group is leveraged to shrink the more imprecise estimates 13 

back towards the group average. Because this benefit relies on anomalous estimates having a 14 

certain degree of imprecision, the estimates may not differ drastically from the two-stage 15 

approach in sufficiently large samples. In the mixed-model approach, the fixed effects will more 16 

closely reflect the underlying response patterns of the individuals (e.g., these fixed effect 17 

estimates will be influenced less by unusually high or low values) as will the random effects 18 

(estimates associated with each participant) be more reflective of the pattern of responding of the 19 

group as a whole (see Ch. 13 of McElreath (2018) for additional examples).  20 

The most extreme case of parameter imprecision occurs when, due to anomalies in the 21 

data, one or more parameters do not have a solution (i.e., the likelihood function is flat and the 22 

parameter sampling error is infinity). In our example, the center-bottom pane of Figure 3 shows 23 
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an individual that altogether lacks the variation in responses needed to estimate both k and 𝛼. In 1 

that case, the model will not converge to a solution, and the resulting parameter estimates may 2 

take extreme values that will exert relatively greater influence on parameter estimates and the 3 

associated standard errors in the second step of the analysis. The principle of shrinkage applies to 4 

these scenarios most of all by forcing non-estimable parameters to take the values of their group 5 

means and thus have no influence on subsequent inferences. This effect could be regarded as an 6 

automatic mechanism of imputation (i.e., assigning or determining a value based on inference 7 

from other data with common characteristics) given insufficiently informative data on some 8 

individuals. 9 

On the other hand, standard errors resulting from the fit-to-group approach may be 10 

artificially small due to inclusion of all participant data while also treating all data as 11 

independent. However, repeated measures on the same subject are typically correlated, thus 12 

containing some of the same information. In the presence of a positive correlation, standard 13 

errors should be larger than if the data are independent since there is less unique information in 14 

the data for a given sample size. This is one reason why standard errors from the fit-to-group 15 

approach are unlikely to accurately reflect the true precision in the estimate. Generally, small 16 

standard errors suggest a high degree of precision in the estimates (even if the estimates are not 17 

completely accurate) and this size will affect inferences from statistical tests (e.g., considering if 18 

a difference is statistically significant or not). While the size of the standard errors associated 19 

with the fit-to-group approach, though, are unlikely to be accurate, simulation studies have 20 

shown standard errors resulting from mixed-effects modeling tend to be more accurate (e.g., Ho 21 

et al., 2016; Yu et al., 2014) by including all data and recognizing the correlation present within 22 

subjects.  23 
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Illustration of Mixed-Effects Models 1 

Adapting the behavioral economic demand model (Eq. 1) for use in the mixed-effects 2 

model framework yields: 3 

𝑄*! = 𝑄"' ⋅ 10
#(%!"'#$'%'&&') + 𝜀*! , 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑐 4 

where here 𝑄*! represents quantity of the commodity purchased/consumed by the 𝑖-th participant 5 

at the 𝑗-th price point and 𝐶*! is the 𝑗-th price associated with the 𝑖-th participant (again these are 6 

known from the data). 𝑄"' and 𝛼* represent intensity and rate of change in elasticity associated 7 

with the 𝑖-th participant. Finally, the error (𝜀*!) term is error associated with each individual. This 8 

and any other mixed-effects model can be expanded into matrix notation, which can be found in 9 

the Appendix. 10 

In the statistical program, R, there are several functions and packages for fitting nonlinear 11 

mixed-effects models. For the purposes of this paper, we use nlme from the nlme package 12 

(Pinheiro et al., 2020; see also nlmer from the lme4 package, for example). As mentioned earlier, 13 

the code necessary to reproduce all figures and analyses are available in the corresponding 14 

author’s GitHub6. 15 

We can see the results of the mixed-effects models in Figure 4. Several things are 16 

important to note. First, notice this model provides group-level fixed-effects predictions (left 17 

panel; red prediction line) and participant level predictions (blue and gray lines) obtained from 18 

adding the fixed and random effects together because, again, the random effects are deviations 19 

around the group-level fixed effects associated with individual subject data. In the left panel of 20 

Figure 4 we see the group-level fixed-effect predictions approximate the average of all the lines 21 

and look similar to the left panel of Figure 2. In the right panel of Figure 4 we see the participant 22 

 
6 https://github.com/brentkaplan/mixed-effects-demand 
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level predictions match closely to the individual points and look similar to the right panel of 1 

Figure 3. Figure S1 in the supplemental materials shows how these two approaches differ by 2 

overlying these lines on the raw consumption data. 3 

[FIGURE 4] 4 

Figure 5 displays the estimates and the standard errors associated with the three 5 

approaches for log(𝑄") and log(𝛼). This figure nicely illustrates the relative advantage of the 6 

mixed-effects modeling approach with respect to the size and accuracy of the standard errors, as 7 

discussed previously. On the left side of the graph, the fit-to-group approach (circles) shows 8 

substantially smaller standard errors, whereas the middle points (two-stage approach; squares) 9 

show larger standard errors. Notice the size of the standard errors associated with the mixed-10 

effects modeling approach (diamonds) is more similar to the two-stage approach, suggesting the 11 

fit-to-group approach overestimated the precision of the estimates. The size and accuracy of 12 

standard errors are important when conducting statistical tests to determine the extent to which 13 

certain values of 𝑄" and 𝛼 may be statistically different across two or more experimental groups 14 

or conditions. Too narrow of standard errors are likely to inflate Type I error (erroneously 15 

rejecting the null hypothesis and concluding an effect or difference exists when it does not), 16 

whereas too wide of standard errors are likely to inflate Type II error (failing to reject the null 17 

hypothesis and concluding the difference or effect does not exist when it does). Accuracy and 18 

proper size of standard errors is critically important for comparisons such as whether a certain 19 

drug maintains a higher abuse liability than another; an example we will illustrate using a 20 

nonhuman dataset later in this paper.   21 

[FIGURE 5] 22 
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Up to this point, we have demonstrated how the mixed-effects model can be applied to a 1 

single group and how estimates differ from the fit-to-group and two-stage approaches. We now 2 

discuss how these mixed-effects models can be extended to different types of experimental 3 

designs, including between subject and within-subject designs. 4 

Extending the Mixed-Effects Model 5 

Between-Subject Designs 6 

Extending the mixed-effects models described here to between-subject designs 7 

comparing two or more groups at a single timepoint is straightforward and relatively simple. For 8 

these designs, an additional fixed effect representing the between-subject experimental 9 

manipulation is added7. The random effects structure remains the same. Additional covariates or 10 

variables of interest can be added in much the same way that a fixed-effect term representing a 11 

between-subject experimental manipulation can be added. 12 

Crossed and Nested Designs 13 

Special care must be taken to understand the experimental design and data structure to 14 

properly specify how the random effects should be estimated in designs incorporating repeated 15 

measurements. Two types of these designs are crossed and nested design. For example, a nested 16 

design might measure demand over several days among two groups of participants with one 17 

group receiving active medication and the other group receiving placebo. These demand 18 

measurements are nested within participant and participant is nested within drug group (active 19 

vs. placebo). However, drug group is a between-groups factor because a participant can be in 20 

 
7 In the R statistical software, adding a fixed effect term is as easy as adding “+ fixed_term” in the fixed argument of 
nlme. For additional insight into model formulation see Pinheiro & Bates (2000), as well as the comments in the R 
Markdown document at https://github.com/brentkaplan/mixed-effects-demand.  
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only one group or the other. These types of models are most easily implemented in various 1 

mixed-effects modeling packages in the R Statistical Software. 2 

Crossed designs are those in which there are no inherent levels or nesting. For example, a 3 

crossed design might be measuring demand over consecutive days among participants who 4 

experience two different doses of a drug. Whereas demand measurements are nested within 5 

participant (similar to above), all participants experience both doses of the drug. Therefore, there 6 

are sources of variation at both the participant level and at the experimental manipulation level 7 

but without exclusive nesting. Importantly, “… nested effects are an attribute of the data, not the 8 

model” (Errickson, n.d.). There may be experiments where no specific manipulation is 9 

implemented. In these cases, a mixed-effects model can still be fit and this model formulation 10 

will be relatively simple compared to more complex experimental designs. Here we will 11 

illustrate an example of a nonhuman self-administration dataset with no inherent levels of 12 

nesting between monkeys and drugs. We will demonstrate how the mixed-effects model can 13 

estimate multiple fixed effects of interest (i.e., different reinforcers) and how we can use these 14 

models to directly compare differences in demand parameters using null-hypothesis testing. 15 

Example Application: Nonhuman Self-Administration 16 

The following example illustrates application of the mixed-effects model to nonhuman 17 

animal data published in Koffarnus et al. (2012). The monkeys responded on increasing fixed-18 

ratio schedules (i.e., “prices”) to earn infusions of the various reinforcers. The drugs used 19 

included cocaine, ethanol, ketamine, methohexital, and remifentanil. Two additional conditions 20 

were tested including food (sucrose pellets) and saline infusions. 21 

As we showed earlier in the paper, we will first demonstrate modeling by fitting a single 22 

curve to all the data within each reinforcer (fit-to-group approach), as well as fitting to each 23 
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monkey for each reinforcer (two-stage approach). Finally, we show how the mixed-effects model 1 

provides us with both predictions at the reinforcer level, as well as individual monkey level for 2 

each reinforcer, and how we can use estimated marginal means (i.e., least-square means) to 3 

compare reinforcing efficacy (𝛼) of the reinforcers. 4 

Fit-to-Group and Two-Stage Approaches 5 

Our first approach fits a single demand curve to each of the seven reinforcers. This was 6 

the analysis method used in the original paper (Koffarnus et al., 2012). The left panel of Figure 7 

S2 (Supplemental Materials) displays the fitted curve to each of the reinforcers, the 25% and 8 

75% interquartile range (vertical black lines), and the individual data. The right panel shows 9 

these group-level fits within each monkey. Notice here how for some monkeys, the predicted 10 

lines are far from the points (e.g., Saline for LE, TI). This discrepancy between the population-11 

level predictions and some proportion of the individual data is similar to what was observed with 12 

the Alcohol Purchase Task dataset. Figure 6 displays the estimates and standard errors from the 13 

model (circles) and results from the analyses show Saline resulted in the highest log(𝛼) and 14 

Cocaine and Remifentanil with the lowest. Other reinforcers were intermediary. 15 

[FIGURE 6] 16 

As in the human example, we show the first stage of fitting the model using the two-stage 17 

approach. We encounter the same limitations as in the human example; namely, we are unable to 18 

derive population-level (i.e., reinforcer-level) estimates of 𝑄" or 𝛼 and we are unable to obtain 19 

individual-level fits for BU Ethanol. The left panel of Figure S3 shows the individual monkey 20 

fits within each reinforcer and the right panel displays these fits within each monkey and for each 21 

reinforcer. As is expected, these lines fit the individual data well. Figure 6 displays the averaged 22 

estimates and standard errors from this two-stage approach (squares). The results of this 23 
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approach are consistent with those of the fit-to-group approach – Saline and 1 

Cocaine/Remifentanil showing the highest and lowest log(𝛼), respectively.  2 

Mixed-Effects Model 3 

Figure 7 displays the results of the mixed-effects modeling approach. Both panels show 4 

prediction lines from the fixed-effect estimates for each of the drugs (thick lines) and the subject-5 

level predictions from the random effects (light lines). As shown and demonstrated in the human 6 

example, the mixed-effects model provides information (i.e., predictions) at the population level 7 

(in this case the reinforcer level) as well as at the individual level. In this mixed-effects model, 8 

we fit each reinforcer as a nominal (categorical) fixed effect. In models where categorical fixed 9 

effects are used, we can use estimated marginal means to compare the values of log(𝛼) for each 10 

nominal category. Estimated marginal means provide the mean response values for a model’s 11 

factors adjusting for any covariates (Lenth, 2019). In the current models, the estimated marginal 12 

means are equivalent to the model effects given there are no covariates for which to account. The 13 

values are shown in Figure 6 (diamonds). The results of the mixed-effects model are consistent 14 

with the findings from the traditional approaches, suggesting Saline and Cocaine/Remifentanil 15 

maintained the highest (lowest reinforcing value) and lowest (highest reinforcing value) log(𝛼), 16 

respectively.  17 

[FIGURE 7] 18 

Comparing Coefficient Values  19 

One additional benefit of fitting these nonlinear mixed-effects demand models is the 20 

relative ease in which statistical comparisons can be made. Using the fit-to-group approach, 21 

traditional methods of statistical tests are largely limited to those such as the Extra Sum-of-22 

Squares F-test and comparisons in Akaike Information Criteria (AIC, AICc). Using the two-stage 23 
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approach, comparisons techniques are more numerous and range in complexity (e.g., t-tests, 1 

analysis of variance, mixed-effects models). The relative benefits and drawbacks of these 2 

comparison methods will not be contrasted here; rather, we note that post hoc pairwise 3 

comparisons can be determined directly from the model and with no need to extract parameter 4 

values and use in subsequent tests, as is required in the two-stage approach. For example, we 5 

used a powerful and flexible R package (emmeans; Lenth, 2019) to conduct pairwise 6 

comparisons (t-tests) of log(𝛼) from the mixed-effects model and adjusted p-values using false 7 

discovery rate (see Table S1). The results suggest largely conform to those displayed in the 8 

bottom panel of Figure 6. Saline’s log(𝛼) was statistically significantly higher (lower valuation) 9 

than all other reinforcers tested. Cocaine and Remifentanil’s log(𝛼)’s were significantly lower 10 

(higher valuation) compared to all other reinforcers except Food and each other. 11 

Other Considerations 12 

Beyond the introduction and basic concepts laid out here in the re-analysis of a human 13 

Alcohol Purchase Task dataset and nonhuman self-administration dataset, there are additional 14 

considerations for fitting mixed-effects models to behavioral economic operant demand data. 15 

One consideration is the determination of convergence criteria. Convergence criteria can be 16 

relatively lenient (i.e., finding “good enough” estimates and looking no further after the criteria 17 

is met) or they can be relatively strict. With data that follow the typical exponential decay 18 

function of demand (i.e., systematic), convergence can more easily be obtained under strict 19 

criteria. With data that are relatively more “unsystematic,” strict criteria may not result in 20 

convergence and these criteria may need to be relaxed (e.g., increasing tolerance). Another 21 

reason convergence may not be achieved is because starting values may be too far away from the 22 

optimal solution. This problem is also present in traditional approaches to fitting demand curve 23 
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data (e.g., fit-to-group, two-stage) and nonlinear modeling in general. If convergence issues are 1 

encountered, we suggest relaxing the convergence criteria until a solution is determined. Then 2 

the estimates from this model may be used as starting values for another model where 3 

convergence criteria are tightened once more. Given the complexity of demand curve data and 4 

some quantitative models to describe these data, some amount of relaxation of convergence 5 

criteria may be acceptable (in our anecdotal experience, we have found tolerance < 0.01 may be 6 

an acceptable limit). However, when encountering datasets or models that do show difficulty 7 

converging, the researcher should ensure they are specifying the model correctly and may 8 

consider reporting difficulty fitting the model. 9 

Finally, mixed-effects models may be solved using Bayesian methods and Markov Chain 10 

Monte Carlo (MCMC) as opposed to maximum likelihood estimation. Methods such as these 11 

have been successfully applied to behavioral economic demand data (Ho et al., 2016). MCMC 12 

has the added benefits of producing empirical posterior (or under frequentist assumptions, 13 

sampling) distributions for all parameters in the model and does not suffer from certain 14 

convergence problems with maximum likelihood estimation in small samples. Several packages 15 

in the R statistical software can solve mixed-effects models using Bayesian methods (e.g., brms, 16 

rstanarm). We recommend one package in particular, brms, as this package provides even greater 17 

flexibility than nlme or lme4 and the syntax (e.g., writing the model) is highly similar to that of 18 

lme4. 19 

Conclusion 20 

Mixed-effects models are becoming a more popular means by which to analyze complex 21 

behavioral economic demand data. Although this modeling technique is more complicated than 22 

traditional approaches to analysis (i.e., fit-to-group, two-stage), our goal here is to make the 23 
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motivation, interpretation, and execution of the mixed-effects modeling technique more 1 

accessible for the analysis of demand data. In this paper we have used two datasets (i.e., a 2 

hypothetical purchase task, nonhuman animal self-administration) to 1) illustrate the traditional 3 

approaches to demand modeling, 2) discuss the relative benefits and limitations of these 4 

approaches, 3) provide an overview of the mixed-effects framework, 4) illustrate the results of 5 

this framework, and 5) describe how results from the mixed-effects modeling technique 6 

correspond with the traditional methods. In order to facilitate execution of these techniques, we 7 

have made a fully reproducible document available at the corresponding author’s GitHub page as 8 

a repository. There, this code can be inspected, executed, and adapted for researchers’ own 9 

endeavors.  10 
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Appendix 1 

A Word about Maximum-Likelihood Estimation 2 

Mixed-effects models are typically solved via maximum-likelihood estimation (see Table 1; note 3 

these models can also be solved via other techniques such as Markov Chain Monte Carlo but this 4 

is beyond the scope of the current paper). A brief overview of this approach follows. First, a 5 

likelihood function (which relates to the observed data to the parameters the experimenter is 6 

interested in) is evaluated for an initial candidate set of parameters during a single iteration of the 7 

model evaluation. The algorithm assesses the shape of the likelihood surface at these parameter 8 

values, then picks a new set of parameter values to achieve a higher likelihood in the next 9 

iteration. The model continues to iteratively select both individual subject (i.e., random effect) 10 

and group (i.e., fixed effect) parameter values and evaluate the likelihood in this manner until the 11 

algorithm reaches the maximum of the likelihood function. This final set of random- and fixed-12 

effect values is the set which make the observed data “most likely” to have occurred, and thus 13 

serve as the parameter estimates based on the observed data. Restricted maximum likelihood is 14 

frequently used for mixed-effects models since it typically produces variance estimates with less 15 

bias than traditional maximum likelihood (Liao & Lipsitz, 2002; Meza et al., 2007). However, 16 

regular maximum likelihood estimation is used for comparing fixed effects across different 17 

mixed-effects models. For more in-depth discussion, see Bates et al. (2014). The primary 18 

difference, therefore, between maximum likelihood estimation and nonlinear least squares 19 

regression is that the former determines the coefficients that maximize the probability of the 20 

observed data, whereas the latter minimizes the error (deviations between the predicted and 21 

observed values). 22 

 23 
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Expanding into Matrix Notation 1 

We expand this in matrix notation to describe how the individual estimates 𝑄"' and 𝛼* are the 2 

sum of the fixed effects 𝛽' and 𝛽) and random effects 𝑏'* and 𝑏)*. The random effects 𝒃𝒊 are 3 

distributed based on a multivariate normal (𝑀𝑁) distribution with mean 0 and variance equal to 4 

𝜓. Because the 𝒃𝒊 random effects index the individual, we assume the sampling distribution of 5 

these two effects may be correlated to some extent with each other, which is shown in the 6 

expansion of 𝜓. 7 

;
𝑄"'
𝛼*
< = ;

𝛽'
𝛽)
< + =

𝑏''
𝑏)*
> = 𝜷 + 𝒃𝒊, 𝒃𝒊~𝑀𝑁(0, 𝜓), 𝜖*!~𝑁 D0, 𝜎)𝑓F𝑝!HI 8 

and 9 

𝜓 = =𝜎'
) 𝜎')

𝜎') 𝜎))
> 10 

In essence, the fixed effects 𝛽' and 𝛽) are analogous to the parameters we obtain from the fit-to-11 

group approach and the random effects 𝑏'* and 𝑏)* are analogous to those we obtain from the 12 

two-stage approach. Here the difference is we leverage all the available data; in other words, 13 

how does the sample as a whole respond (i.e., fixed effects) and how do individuals respond 14 

relative to the sample (i.e., random effects).15 
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Table 1: Terms and Definitions 
 

Term Classic Frequentist Definition Additional information 
Parameter Values that we do not know but wish to estimate with 

data. For demand, these are Q0, α, and error variance. 
Frequentist statistical approaches assume these true 
population values are unknown constants. 

 

Effect Effects are parameters that predict the response. In 
demand, these are Q0 and α. 

 

Fit-to-
group 
approach 

Fitting to means: At each cost, compute the average 
consumption across individuals. Fit a demand model to 
this single series of averages or mean values. By replacing 
the full data with sample means, overall variability is 
ignored. This method is not appropriate for statistical 
inference and suitable for descriptive, graphical, and 
theoretical equation testing purposes only. 
 
Pooling data: Data from all individuals is included and a 
single, group-level curve is fit. This variation assumes all 
data points are independent leading to incorrect standard 
errors for estimators.  
 
This is a fixed effects analysis and in both cases 
parameters invariant across the whole sample are 
estimated. Typical demand models exhibit relatively low 
error variance in this analysis compared to models based 
on individual subjects (i.e. two-stage-approach). 

The fit-to-group approach is 
one of several terms used to 
describe this method. In areas 
outside of behavioral 
economics, the fit-to-group 
approach is also referred to as 
(complete) pooling or pooled 
regression (see definition to 
the left and definition 
associated with fixed effects) 
and does not preprocess data 
into means.  

Two-stage 
approach 

Fit a demand model to each individual’s data series 
separately, ignoring any information about the sample as a 
whole. This first stage produces a collection of fixed effect 
estimates of α and Q0 for each individual. These estimates 
subjected to an additional second stage of statistical 
analysis to make group comparisons (e.g., t-tests, analysis 
of variance). 

The two-stage approach is 
one of several terms used to 
describe this method. Other 
terms include: no pooling 
(data from each subject is fit 
separately and no data are 
“combined” together). One 
way to think of this approach 
is to consider it an “amnesia” 
model where nothing about 
one subject’s parameters 
influences another subject’s 
parameters (McElreath, 
2018).  

Mixed-
effects 
modeling 

Mixed-effect modeling for demand data is the main 
subject of this paper. Mixed-effect models are models that 
can incorporate both fixed and random effects. 

Mixed-effects modeling is 
one of several different terms 
to describe incorporating 
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In demand, a mixed-effects modeling framework allows 
the researcher to simultaneously model underlying trends 
in effects, individual-specific departures from these trends 
(i.e., random effects), and quantify error variance in the 
context of a single model. 

fixed and random effects. 
Other terms used include: 
multilevel modeling, 
hierarchical modeling, and 
partial-pooled modeling. One 
benefit of these models is the 
ability to incorporate 
additional fixed (and random) 
effects directly in the model.  

Fixed 
effects 

Fixed effects are assumed constant in the broader 
population from which the observed data are drawn. The 
sample data are used to produce estimates of these 
parameters, and the resulting estimates have with some 
degree of imprecision (i.e., standard error). 

 

Random 
effects  

Random effects induce variability in parameters 
attributable to differences in how individuals respond. For 
example, demand analysis might treat α and Q0 as random 
effects and thus estimate a unique α and Q0 for each 
participant within a single model. Random effects follow a 
probability distribution that imparts the ability for these 
effects to vary among individuals.  

 

Error 
variance 

Error variance describes what is left unaccounted for in 
the model. Error is quantified by averaging the squared 
residual (i.e., the vertical difference between observed and 
expected consumption) across each data point in the 
analysis. 
 
Error variance is an unavoidable aspect of any typical 
statistical analysis. The only way to eliminate error 
variance would be to choose a function that exactly 
replicates the observed data. Since the broad purpose of 
statistical reasoning is to probabilistically generalize 
trends to a population larger than the observed data, 
functions which replicate the exact data are typically 
overfit for the purpose of generalization and thus 
statistically they would essentially be useless. This is why 
any typical analysis incorporates error variance.  

 

Ordinary 
least 
squares 

The ordinary least squares approach estimates parameters 
as those values which minimize the error variance. This 
technique of estimation is used in the fit-to-group and the 
two-stage approach. 

 

Maximum 
likelihood 
estimates 

Maximum likelihood estimates are those parameter values 
that make the observed data “most likely.”  Specifically, 
the likelihood function is the joint distribution of the data 
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taken as a function of the parameters. Maximum 
likelihood searches the entire space of parameter values to 
determine those values which maximize the likelihood 
function, and these optimizing values are the maximum 
likelihood estimates. Maximum likelihood and its variants 
are essential tools for mixed modeling implementation. 
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Figures 

Figure 1. Two common nonlinear regression methods. Subset of Alcohol Purchase Task data 
from Kaplan and Reed (2018). Top panel: Individual points in different colors and open shapes 
and mean values in filled black circles. The black line shows the best fit line using the fit-to-
group approach. Notice that only one curve is generated for the entire sample, even though there 
are many individual points that fall above and below the mean points. Bottom panel: The same 
individual points as the top panel, now illustrating the first stage of the two-stage approach where 
one regression line is fit for each participant.  

● ● ● ● ●
●

●

●
● ●

●●●
● ● ●

0.0

2.5

5.0

7.5

10.0

0.25 0.50 1 5 10

H
yp

ot
he

tic
al

 D
rin

ks
 P

ur
ch

as
ed

Fit−to−group approach

0.0

2.5

5.0

7.5

10.0

0.25 0.50 1 5 10
Price per Drink ($USD)

H
yp

ot
he

tic
al

 D
rin

ks
 P

ur
ch

as
ed

Two−stage approach



MIXED-MODEL DEMAND 

 42 

 
Figure 2. Results from the fit-to-group approach. Left panel: Individual points in gray and subset 
of participants from right panel in open purple diamonds. Black vertical bars indicate the 
interquartile range between 25% and 75%. The red line shows the best fit line from the fit-to-
group approach. Right panel: A subset of participants and their responses. The red line in each 
pane is identical to the fit-to-group approach demonstrating each participant has the identical 
predicted values. Visual inspection reveals that the best fit line is inadequate to characterize the 
data for a number of participant datasets.  
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Figure 3. Results from the first stage model fitting from the two-stage approach. Left panel: 
Individual best fit lines in gray and subset of participants' best fit lines from right panel in 
maroon dashed line. Note here because of this approach, no overall group-level best fit curve is 
generated. Right panel: A subset of participants and their responses. The maroon dashed lines 
show best fit lines for each participant. As illustrated in the bottom three panes, one of the 
limitations of the two-stage approach is that irregular datasets often times do not yield usable 
demand metrics. In these cases, no model predictions are obtained and demand parameters from 
these models cannot be used in subsequent analyses.  
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Figure 4. Results from the mixed-effects model regression. Left panel: Individual predicted lines 
in gray, subset of participants' predicted lines from right panel in blue dashed lines, and the 
overall group's best fit line in solid red. Note here the mixed-effects model provides a population 
best fit line (i.e., fixed effects) and individual predictions (i.e., random effects), both which 
leverage data from all participants. Right panel: A subset of participants and their reported 
responses. The blue dashed lines show predicted values from participants' random effects, which 
deviate from the overall group’s best fit line (solid red line).  
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Figure 5. Point estimates and standard errors for log(𝑄") (top panel) and log(𝛼) (bottom panel) 
from each of the three fitting methods. Notice how for this dataset, the fit-to-group approach 
(circles) tend to underestimate standard errors whereas the two-stage approach (squares) standard 
errors are larger. The mixed-effects modeling approach is shown in diamonds.  
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Figure 6. Point estimates and standard errors for log(𝑄") (top panel) and log(𝛼) (bottom panel) 
from each of the three fitting methods for each reinforcer. Results of the mixed-effects modeling 
approach (diamonds) are consistent with and provide more accurate standard errors compared to 
the fit-to-group (circles) and two-stage (squares) approaches.  
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Figure 7. Results from the monkey mixed-effects model regression. Left panel: Dashed colored 
lines indicate the fixed effect predictions from the mixed model, whereas the solid, transparent 
colored lines show individual predicted lines as extracted from the random effects. Note here the 
mixed-effects model provides best fit lines for each reinforcer as well as individual predictions, 
both which leverage data from all participants and all conditions. Right panel: Individual 
monkeys and their consumption. The solid, transparent colored lines show predicted values from 
participants' random effects, which deviate from the overall group means (dashed colored lines). 
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