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Abstract 

 Contemporary approaches for evaluating the demand for reinforcers use either the 

Exponential or the Exponentiated model of operant demand, both derived from the framework of 

Hursh and Silberberg (2008). This report summarizes the strengths and complications of this 

framework and proposes a novel implementation. This novel implementation incorporates earlier 

strengths and resolves existing shortcomings that are due to the use of a logarithmic scale for 

consumption. The Inverse Hyperbolic Sine (IHS) transformation is reviewed and evaluated as a 

replacement for the logarithmic scale in models of operant demand. Modeling consumption in 

the “log10-like” IHS scale reflects relative changes in consumption (as with a log scale) and 

accommodates a true zero bound (i.e., zero consumption values). The presence of a zero bound 

obviates the need for a separate span parameter (i.e., k) and the span of the model may be more 

simply defined by maximum demand at zero price (i.e., Q0). Further, this reformulated model 

serves to decouple the exponential rate constant (i.e., α) from variations in span, thus 

normalizing the rate constant to the span of consumption in IHS units and permitting 

comparisons when spans vary. This model, called the Zero-bounded Exponential (ZBE), is 

evaluated using simulated and real-world data. The direct reinstatement ZBE model showed 

strong correspondence with empirical indicators of demand and with a normalization of α 

(ZBEn) across empirical data that varied in reinforcing efficacy (dose, time to onset of peak 

effects). Future directions in demand curve analysis are discussed with recommendations for 

additional replication and exploration of scales beyond the logarithm when accommodating zero 

consumption data. 

 Keywords: operant demand, behavioral economics, decision making, quantitative 

modeling  
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Introduction 

 Behavioral economic methods are increasingly applied in various areas of basic and 

applied science. Among the methods in the behavioral economic framework, the concept of 

demand has been particularly useful in quantifying complex cost-reinforcer relationships, such as 

those observed in issues such as substance use (Acuff, Amlung, Dennhardt, MacKillop, & 

Murphy, 2020; Bickel, Johnson, Koffarnus, MacKillop, & Murphy, 2014; Kaplan, Foster, et al., 

2018; Reed et al., 2020), obesity (Epstein et al., 2012), and the consumption of drugs (Aston, 

Metrik, & MacKillop, 2015; Pickover, Messina, Correia, Garza, & Murphy, 2016). Briefly, the 

behavioral economic concept of demand refers to the degree to which an individual or group will 

work to defend their bliss point consumption of a reinforcer as a function of one or more factors, 

e.g. price (Bickel, Snider, Quisenberry, & Stein, 2017; MacKillop, Goldenson, Kirkpatrick, & 

Leventhal, 2019; Schwartz et al., 2019). Further, this framework has also been used to evaluate 

the abuse liability of novel drugs (Aston, Knopik, McGeary, MacKillop, & Metrik, 2017; 

Owens, Ray, & MacKillop, 2015) as well as the environmental and genetic factors that influence 

their use and abuse liability (Aston et al., 2017; Owens et al., 2015). 

 Analyses of operant demand typically evaluate changes in consumption as a function of 

changes in price using the logarithm, or log, scale (Lea & Roper, 1977). The log scale reflects 

changes proportionally and this trait is well suited to applications in economics that focus on 

relative changes. For instance, the log scale is one way to facilitate comparisons of how 

proportional decreases in consumption relate to proportional increases in price, i.e. elasticity 

(Gilroy, Kaplan, & Reed, 2020). Stated another way, “the important property of the elasticity of 

a function is that it is a number which is independent of the units in which the variables are 
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measured. This is clear since the elasticity is defined in terms of proportional changes which are 

necessarily independent of units” (Allen, 1938, p. 252). 

The prototypical form of the demand curve in log-log dimensions is nonlinear in shape. 

Hence, a nonlinear model is well-suited to represent this form. The model proposed by Hursh 

and Silberberg (2008) is an exponential decay function on the logarithm of consumption. For the 

sake of brevity, we shall refer to this model as the Exponential model (EXPL). This model 

evaluates logarithmic changes in consumption (i.e., log10Q; relative differences) as a function of 

price and its structure is shown in Equation 1: 

𝑙𝑜𝑔ଵ଴𝑄 = 𝑙𝑜𝑔ଵ଴𝑄଴ + 𝑘(𝑒ି∝ொబ௉ − 1) (1) 

In Equation 1, Q refers to consumption, P to price or cost, and the three fitted parameters are Q0, 

, and k. The rate constant of the exponential, , captures the rate of change in consumption 

across the full domain of the demand curve (i.e., the sensitivity to increasing price). The y-

intercept, Q0, reflects the level (or overall intensity) of demand at zero price (i.e., P = 0). The 

span parameter, k, sets the lower bound of consumption (from Q0) in log units. This model has 

demonstrated wide generality and precision in fitting demand curves (Hursh & Roma, 2013, 

2016). It has been cited by over 500 publications, and both this model and its derivatives 

(Koffarnus, Franck, Stein, & Bickel, 2015) have become the standard for assessing operant 

demand in behavioral research. This report provides a novel implementation of the framework 

introduced by Hursh and Silberberg (2008), reviews the limitations of the EXPL model, and 

provides a revised approach that resolves these limitations.  

Complications of the Exponential Model (EXPL): Hursh and Silberberg (2008) 

Despite widespread application in human and non-human research (Hursh & Roma, 

2013, 2016), there are three overarching limitations to the EXPL model. First, not all forms of 

consumption can be evaluated in logarithmic units. That is, zero consumption values are 
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undefined on the log scale and must be excluded from analyses. As such, zero consumption 

values must be either dropped or modified to apply the EXPL model. Second, the log scale has 

no defined minimum or lower bound. That is, relative decreases on the log scale proceed towards 

negative infinity and never reach true zero. As a result of this limitation, the authors of the EXPL 

model included a parameter to restrict the span of the demand curve, i.e. k. In practice, this 

parameter refers to the range of the observed consumption (plus a margin). Often, it is simply 

treated as a fitted parameter in the range 0 > k ≤ 5 and the best fitting shared value within an 

experiment is used in subsequent analyses. Ultimately, there are no absolute standards for the 

value of k and the value typically varies across experiments, complicating comparisons between 

studies (Kaplan, Foster, et al., 2018). Third, and related to the earlier point, the rate constant  is 

inherently bound to the span parameter in the EXPL model. That is, the rate of change in 

consumption is jointly reflected by both  and k (Hursh, 2014). Researchers have typically held k 

constant within experiments to facilitate comparisons of , but this approach is not without 

limitations. For instance, the span of individual demand curves may vary widely across groups 

and conditions and a single k value may not characterize the data equally well across groups or 

individual cases. Additionally, comparisons of  across experiments conducted in different 

laboratories are further complicated because span differences frustrate clear comparisons. 

Revisiting the first limitation, the log transformation of consumption introduces 

challenges when zero consumption values are encountered. As an alternative to excluding data 

outright, researchers have used several approaches to avoid problematic zero values. Among 

these, some have recommended replacing zero values with a small, arbitrary constant (Kaplan, 

Foster, et al., 2018; Koffarnus et al., 2015) and others have restricted analyses to overall 

aggregates across groups (i.e., consumption was averaged across groups and prices). Further, 
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others have omitted the log transformation of consumption altogether, i.e. Koffarnus et al. 

(2015). Regardless of the approach, few firm guidelines exist for addressing zero consumption 

values and each of the approaches noted here presents with limitations. For instance, simply 

dropping the zero values invites the potential for bias in statistical analysis. Koffarnus et al. 

(2015) noted that the exclusion of observed data not occurring at random has the potential to bias 

study results because a specific subset of individual responding is intentionally omitted from the 

analysis. Additionally, researchers have highlighted issues with replacing zero values with small, 

arbitrary constants when using the log scale (Koffarnus et al., 2015; Liao et al., 2013; Yu, Liu, 

Collins, Vincent, & Epstein, 2014). That is, whereas the absolute difference between such 

constants is small (e.g., 0.01 is a 0.09 decrease from 0.1) the proportional difference between 

them is quite dramatic (e.g., 0.01 is a 90% decrease from 0.1). Given that the log scale reflects 

proportional differences, this can have a significant effect on the span of fitted demand curves 

and lead to markedly different results depending on the constants used. 

 Apart from zero consumption values, the log scale limits demand curves analysis in other 

ways as well. That is, simply finding a way to include zero values in the regression would not 

address all the limitations noted above. For instance, such a workaround would not remedy the 

need for an explicit span parameter nor the variability associated with its determination (Kaplan, 

Foster, et al., 2018). Similarly, the rate constant  would also remain coupled to the span and 

thus incomparable unless span was held constant across cases. That is, the unbounded nature of 

the log scale thwarts the use of  as a general metric for essential value, the goal of the EXPL 

model. Hursh (2014) suggested a derivative metric for essential value, EV, that simultaneously 

considers the combined values of  and k, but that metric has not garnered general acceptance. 
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Exponentiated Model (EXPD): Koffarnus, Franck, Stein, & Bickel (2015) 

As an alternative to representing changes in consumption on the log scale, Koffarnus et 

al. (2015) presented a modified form of the EXPL model that evaluated consumption on the 

linear scale. Briefly, the EXPL model was modified through a process of exponentiating the 

terms such that changes in consumption were evaluated in the linear, or natural, scale. The form 

of this model is shown below: 

𝑄 = 𝑄଴ ∗ 10௞൫௘ష∝ೂబುିଵ൯ (2) 

This modified model, termed the Exponentiated model of operant demand (EXPD), evaluates 

changes in consumption using the linear scale (i.e., Q; absolute differences) and supports the 

inclusion of zero consumption values during regression. That is, consumption is fitted on the 

linear scale while the span of the demand curve remains reflected on the log scale. Arranged in 

this way, issues associated with zero consumption values on the log scale are avoided and zero 

consumption data need not be modified nor excluded during regression.1 

 Although the EXPD model shares the same mathematical basis as the EXPL model (i.e., 

parameters are identical when fitted to hypothetical exponential demand with zero-error), it 

warrants noting that the changes in consumption are interpreted differently on linear and log 

scales. As noted earlier, differences in the log scale are reflective of relative change while 

differences in the linear scale are reflective of absolute change. As such, models derived from 

the same framework may yield different estimates when changes are evaluated on different 

scales. That is, differences in the error term are likely to result in varying levels of uncertainty 

and error variance found to be skewed on the linear scale may present more normally distributed 

on the log scale. 

 
1 We wish to clarify that zero values are included in the nonlinear regression for the EXPD model but depending on 
approach these values may be omitted when determining the span of the curve in log units. 
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As noted earlier, issues associated with the EXPL model (and its derivatives) extend 

beyond accommodating zero consumption values. That is, the restatement applied to derive the 

EXPD model retains the log scale in the span parameter and issues with the non-zero lower 

bound remain. Consider the following hypothetical example of the EXPD model fitted with a Q0 

of 282, a k of 2, and an α of 0.0001. In this hypothetical example, numerous zero consumption 

values exist at high prices (e.g., one thousand, ten thousand). With these parameters, levels of 

demand predicted by the EXPD model at prices of one, ten, one hundred, one thousand, and ten 

thousand would be 278, 247, 91, 3.7, and 2.8, respectively. Illustrated here, we see that 

exponentiation accommodates zero consumption values in the fitting process but the range of 

predicted demand remains restricted by the span parameter in log units, k.2 That is, the lower 

bound for the EXPD model cannot be asymptotic at zero because zero is undefined on the log 

scale. Mathematically, the inability to reach a lower bound at zero is to be expected because the 

EXPD model shares the same functional form of the EXPL model. That is, the underlying rate of 

change (α) is represented jointly with the span parameter and this span parameter for both 

models is defined in log units (i.e., log range of upper and lower non-zero consumption). As a 

result, the asymptotic minimum of both the EXPL and EXPD models at high prices can never be 

zero consumption because the underlying log scale decreases to negative infinity. 

Relative vs. Absolute Model Error 

 With respect to performing nonlinear regression, we note that residual error in log scale is 

more accurately described as the (root) mean squared percentage of error rather than the more 

typical (root) mean squared error. Differences between the log and linear scales here are made 

clearer by re-stating one of the rules of logarithms: the logarithm of a quotient is the difference 

 
2 Mathematically, the non-zero lower asymptote for the EXPL/EXPD model is represented by the difference in 
orders of magnitude, i.e. 10୪୭୥భబ ொబି௞. 
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between two separate logarithms and the calculation of residual error on the log scale represents 

a difference of logarithms. The EXPL model evaluates consumption in the log scale; therefore, 

the residual error is a function of relative differences and relative change is at the heart of 

elasticity. Additionally, beyond supporting a unitless estimate of changes in Q, relative error 

supports demand curve analyses in other ways as well. For instance, residual error determined in 

this way remains comparable when levels of consumption vary across both high and low levels. 

That is, the root mean squared residual error is proportionally consistent at extremes (i.e., 

normalized) while the absolute root mean squared residual error may or may not. 

 Residual error representation becomes increasingly relevant in situations where demand 

for a reinforcer is simultaneously evaluated across different prices as well as different 

magnitudes (e.g., dose, concentration). One method for evaluating demand is to simultaneously 

fit individual demand curves across prices and various levels of reinforcer magnitude. The results 

of which provide dosage specific Q0 parameters and represent overall sensitivity to price with a 

single, shared 𝛼 parameter. In the EXPL model, error variance at each dosage level jointly 

contributes to the overall error variance in a comparable fashion when the individual Q0 values 

are observed across multiple orders (e.g., 1, 10, 100). Shown below in Equation 3 is a 

representation of the percentage error in the log scale. 

𝑌෠௡ = 𝑙𝑜𝑔ଵ଴𝑄଴ + 𝑘(𝑒ି∝ொబ௑ − 1) +  𝜀௡ 

𝜀௡ = 𝑙𝑜𝑔ଵ଴𝑌௡ − 𝑌෠௡ 

𝜀௡ = 𝑙𝑜𝑔ଵ଴

10௒෠೙

10௒೙
 

(3) 

In contrast to relative error, nonlinear regression using the EXPD model is driven using 

absolute error (i.e., mean squared error). This distinction is worth highlighting because the mean 

squared error has the potential to disproportionally contribute to overall error variance. That is, 
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demand evaluated simultaneously across prices and magnitudes yields residual error that 

naturally grows as a function of demand intensity (i.e., Q0). As a result, the degree of error 

variance across these related demand curves differentially contribute to the overall error 

variance. This has an unintended effect of occasionally frustrating the characterization of 

demand across magnitudes with a singular rate parameter. As such, it is possible and likely under 

certain circumstances that the two models could ultimately lead researchers to different 

conclusions because of the differences in how error variance is reflected. 

Alternative Log-like Transformations  

 Difficulties associated with zero values and the log scale extend beyond applications in 

operant demand and researchers across various fields have explored alternative scales and 

transformations to handle these situations. Although many such transformations exist, e.g. the 

Box-Cox (BC) family of transformations (Box & Cox, 1964), this report highlights the Inverse 

Hyperbolic Sine (IHS) transformation and how it has been used successfully to accommodate 

zero consumption values in economic analyses (Burbidge, Magee, & Robb, 1988; Johnson, 

1949). Relative to other transformations (e.g., BC), the IHS transformation is particularly 

desirable because it natively supports log-like transformations for positive, negative, and zero 

values. 

 The use of the IHS transformation was proposed in Johnson (1949), but its utility in areas 

of economics was only more recently reviewed in Burbidge et al. (1988) and Bellemare and 

Wichman (2019). As noted in these works, the IHS transformation is favorable to economic 

research because of its “log-like” form and its predictable behavior at and below zero. Regarding 

its mathematical basis, the IHS (i.e., sinh-1) or area sine hyperbolic (i.e., arsinh or asinh; ar- or a- 

to emphasize area rather than arc), is an inverse of hyperbolic functions. That is, whereas sin is 
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defined in terms of the unit circle, sinh is defined in terms of the unit hyperbola. Given these 

differences, the inverse of these functions naturally yields distinct interpretations. Specifically, 

the inverse of the sin (i.e., asin) function yields the length of the arc of the unit circle and the 

inverse of the sinh (i.e., asinh) a measure of area.3  

As a means of transformation, the IHS scale is particularly versatile in that it is simple to 

calculate, is flexible and customizable, and is not undefined at zero, i.e. sinh-1(0) = 0. That is, the 

IHS transformation is easily applied and can be performed in several ways, see Equation 4.  

𝑌 = 𝑎𝑠𝑖𝑛ℎ(𝑋) = 𝑠𝑖𝑛ℎିଵ(𝑋) = 𝑙𝑛 ቀ𝑋 +  ඥ𝑋ଶ + 1ቁ (4) 

Although applicable in its most brief form (asinh), the IHS transformation may be adjusted to 

emulate the properties of another scale or transformation. For example, this method can be 

adjusted such that it becomes more approximate to oft-used log scales, e.g. natural log  (Mount, 

2012). This form taken by this generalized IHS transformation is provided in Equation 5. 

𝑌 = 𝑙𝑛 ቀ𝜃𝑋 +  ඥ𝜃ଶ𝑋ଶ + 1ቁ (5) 

Using parameter 𝜃 in Equation 5, the IHS transformation can be adjusted to closely emulate the 

log scale over most of its range. Once a suitable 𝜃 has been determined, the final transformation 

behaves highly approximate to the desired scale. In our efforts to closely emulate the log10 

transformation, we have found a 𝜃 of 0.5 to be suitable to approximate the scale. Further 

discussion of our optimization of 𝜃 and determination of this specific value is provided in the 

Appendix. The final form of this log10-like IHS transformation is provided in Equation 6. 

 

𝑌 =
𝑙𝑛൫. 5𝑥 + √. 25𝑥ଶ + 1൯

𝑙𝑛(10)
 

 

(6) 

 
3 We note that the area result for asinh x is derived from the (doubled) area that falls between the x-axis, a ray 
passing from the origin (0, 0) to a relevant point of reference (cosh x, sinh x), and the unit hyperbola. 
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𝑌 =  𝑙𝑜𝑔ଵ଴ ቀ. 5𝑥 + ඥ. 25𝑥ଶ + 1ቁ 

The transformation in Equation 6 is well-suited for use in the operant demand framework 

because it emulates the log10 scale across most values and accommodates zero consumption 

values. Illustrated in Figure 1, the transformed and natural values across the log10 and IHS scales 

are illustrated across values ranging from 0 to 100. Shown in this figure, the log10-like IHS scale 

is virtually identical to the log10 scale at values of 10 or above and gradually approaches zero for 

values less than 10.4 Although the progression from 10 to 0 naturally differs from the log10 scale 

being emulated, the progression from 10 to 0 continues to correspond with decreases observed in 

the log scale. That is, for a data value of 5, there is only a 2% difference between log10 and IHS 

transforms, and at 3 less than a 10% difference. Hence, the major differences between scales are 

most represented with values of 1 and below. Lastly, transformed values may be returned to their 

original values using Equation 7. 

𝑋 =  
1

10௒
(10ଶ௒ − 1) 

(7) 

A Zero-Bounded Model of Operant Demand 

 The log scale has been both an asset and a challenge in demand curve analysis. Zero 

consumption values are undefined in this scale and the log-based span (k) used in both the EXPL 

and EXPD models does not support a zero asymptote (i.e., a true lower bound at zero). 

Approaches to mitigating these limitations and have been the source of significant debate and 

complete solutions to these issues with the log scale have not yet emerged. The IHS 

transformation presented here provides a means to resolve these challenges while retaining the 

functional form of the EXPL and EXPD models, i.e. the framework presented in Hursh and 

 
4 We note here that the index for log10-like IHS scale is 10 and that transformed values above the index are 
essentially identical between the log10 and log10-like IHS scales. 
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Silberberg (2008). That is, the original framework and interpretation are preserved, and the 

typical log10 scale is replaced with a “log10-like” alternative. The direct restatement of the EXPL 

model using the IHS scale is provided in Equation 8. 

𝐼𝐻𝑆(𝑦) = 𝐼𝐻𝑆(𝑄଴) + 𝐼𝐻𝑆(𝑄଴) ∗ 𝑒ି∝ொబ௫ − 1 (8) 

where 𝐼𝐻𝑆(𝑄଴) = 𝑙𝑜𝑔ଵ଴(0.5 𝑄଴ +  ඥ0.25 𝑄଴
 ଶ + 1 )  

This restatement of the EXPL model, hereafter referred to here as the Zero-Bounded Exponential 

model (ZBE), evaluates changes in consumption in the log10-like IHS scale rather than the log10 

(or linear) scale. This is presented as a novel implementation of the framework because 

differences in scale support new behavior. First, the ZBE model can reach a true lower bound of 

zero (i.e., it can accommodate zero and non-zero asymptotes) and this will never be possible 

when the span of consumption is reflected in log units. Specifically, consumption represented in 

IHS units has a maximum at IHS(Q0) and a minimum of zero; hence, the span of the demand 

curve in IHS units is simply IHS(Q0). As a result, Q0 can serve as its span and this obviates the 

need for a separate span parameter (or any additional margin) in most cases. Second, the span of 

the demand curve is far less sensitive to consumption occurring at very low rates (i.e., 

fractional). For instance, several applications of the ZBE model are illustrated in Figure 2 with a 

trailing zero consumption value retained, replaced with 0.1, and replaced with 0.01. Shown here, 

fittings across these conditions produced well-fitting curves with estimates that were virtually 

identical regardless of the zero or near-zero values included. That is, the small constants used to 

replace zero (e.g., 0.1, 0.01) did not produce the undesirable variability rightly highlighted in 

Koffarnus et al. (2015). 

 As noted earlier, the ZBE model can be simplified by removing the explicit span 

parameter, k. As noted by Hursh (2014),  varies with span (k) in the EXPL model and this 
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frustrates comparisons in cases where span parameters vary. In removing parameter k and 

normalizing  to the units of IHS(Q0), the ZBE model effectively removes this coupling. 

Factoring out the duplicated span term in Equation 8 and dividing  by IHS(Q0), this yields a 

normalized version of the ZBE model (ZBEn). This is shown in Equation 9 and further 

information on this derivation is provided in the Appendix. 

𝐼𝐻𝑆(𝑦) = 𝐼𝐻𝑆(𝑄଴) ∗ 𝑒
ି 

∝
ூுௌ(ொబ)

ொబ௫
 (9) 

The goals of this report were to introduce the IHS scale as a replacement for the log scale 

in the Hursh and Silberberg (2008) framework, to review the benefits and applicability of the two 

forms of the ZBE model (i.e., ZBE, ZBEn), and to evaluate the performance of the ZBE models 

across both simulated and peer-reviewed data. Specifically, derived measures of intensity (Q0) 

and PMAX from various models were compared to their observed, empirical equivalents, i.e. Q0-E 

and PMAX-E. Additionally, each model was evaluated with respect to its ability to characterize 

demand for a reinforcer across multiple levels of magnitude (i.e., doses). Consistent with earlier 

work in this domain (Gilroy & Kaplan, 2019), all data generating processes and analytical syntax 

have been publicly archived in a GitHub repository hosted by the corresponding author under an 

open-source license for public inspection and future replication.5 

Methods 

Simulated Data: Hypothetical Purchase Task 

 A total of 1,000 simulated consumption series with and without zero values (48.39% zero 

values) were generated using seed parameters and error variance derived from a peer-reviewed 

article related to operant demand (Koffarnus et al., 2015). Whereas the focus of Koffarnus et al. 

 
5 The full source code and materials necessary to replicate all analyses is archived at 
https://github.com/miyamot0/ZeroBoundedDemand 
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(2015) was to recover individual model parameters (e.g., Q0, 𝛼) in the EXPL and EXPD models, 

the goal of the current simulation was to evaluate the correspondence between model estimates 

to observed complements. That is, the measures from each model were evaluated against 

empirical indicators of demand (i.e., Q0 to Q0-E and PMAX to PMAX-E). Empirical measures were 

used as the primary indicators of demand to facilitate consistent comparisons across models. 

Specifically, Q0-E was simply the level of observed consumption at the lowest price and PMAX-E 

was derived by determining the price associated with maximum observed output, i.e. Q * P. 

Parameter 𝛼 was not directly evaluated, given that differences were to be expected between 

models due to scale differences rather than the performance of each model.  

 All simulation, model fitting, and calculations were performed using the R Statistical 

Program (R Core Team, 2017). Simulation data series were prepared using the group-level 

estimates and residual error variance reported in Koffarnus et al. (2015).6 The prices included in 

the simulation consisted of the following: $0.10, $1.00, $3.00, $10.00, $30.00, $100.00, $300.00, 

and $1000.00. These parameters and prices were used to generate series representative of the 

original data and simulated data that passed criteria for systematic purchase task data were 

included in subsequent analyses (Stein, Koffarnus, Snider, Quisenberry, & Bickel, 2015). 

Simulated Data Analytical Plan 

 Simulations were designed to evaluate demand curve metrics, across models and varying 

compositions of data. To minimize differences due to varying numbers of parameters (i.e., 2 vs 

3), formulations of both the EXPL and EXPD models were prepared using parameter Q0 in place 

of parameter k. In this way, the span as represented in the direct restatement ZBE model was 

 
6 Simulation scripts designed to replicate simulation procedures used in Koffarnus et al. (2015) were adapted from 
the beezdemand package (Kaplan et al., 2018). Seed values for the simulations were Ln 𝛼 (SE) = -2.5547 (0.7025), 
Ln 𝑄଴ (SE) = 1.239 (0.3202), k = 3.096, and YSD = 1.438. 
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reflected in the EXPL and EXPD models as well. That is, the theoretical span across all models 

was made more comparable by referencing the individual intensity of demand (Q0) for each 

respective model.7 Both the original and modified forms of each model are indicated in Table 1. 

Removing the potential variability due to varying numbers of parameters, fitted Q0 parameters 

and derived PMAX calculations from each of the models were then compared to their empirical 

complements using Spearman correlations. 

Parameter Estimation and Calculations of PMAX 

Measures of PMAX were calculated for each of the models of operant demand. The EXPL 

and EXPD models were fitted using methods derived from the beezdemand package in the R 

statistical program (Kaplan, Gilroy, Reed, Koffarnus, & Hursh, 2018). Model fitting for the ZBE 

model was also performed using methods derived from beezdemand, customized to support the 

newer model. Although calculations of PMAX can be performed using exact solution methods for 

both the EXPL and EXPD models (Gilroy, Kaplan, Reed, Hantula, & Hursh, 2019), PMAX for the 

EXPL, EXPD, and ZBE models was determined iteratively by directly evaluating work output 

across prices in the natural scale. That is, PMAX was determined from the fitted model and was 

consistent with an Observed PMAX approach but instead evaluated fitted model predictions 

(Gilroy et al., 2020; Greenwald & Hursh, 2006). Although methods can be used to determine 

unit elasticity with ZBE via a derivative approach, it warrants noting that rates of change in the 

IHS scale present challenges with consumption values that exist well below the index value, e.g. 

10 (Bellemare & Wichman, 2019). That is, the aspect of the ZBE that supports the zero 

asymptote also influences traditional calculations of unit elasticity when prices and/or 

consumption are nearer to zero. Put simply, the transformed units are not constant below the 

 
7 A small constant is typically added to the span in the EXPL and EXPD models and 0.5 was added to the estimated 
span in each of the respective fittings. 
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index and this inconsistency renders a slope of −1 questionable as a correlate to the price of max 

responding, PMAX. As such, researchers could optimize for the price value closest to the elasticity 

of −1 in IHS-IHS coordinates but this price is unlikely to consistently correspond with peak 

levels of responding (i.e., OMAX). In situations where the levels of consumption or price are below 

the index value, the conservative approach to determining PMAX would be to optimize for the 

price that yields the highest levels of work (i.e., Observed PMAX) or evaluate changes in 

consumption and price as a percentages (both in natural units).8 Both approaches are applicable 

for all models but the Observed PMAX was selected given that it was the more conservative 

approach. 

Published Data: Dosage-level Effects 

 Peer-reviewed data from Ko, Terner, Hursh, Woods, and Winger (2002) and Winger, 

Hursh, and Woods (2002) were obtained from one of the authors (S. R. Hursh) and re-analyzed. 

These studies, specifically, were selected due to their inclusion in the earlier validation of the 

Hursh and Silberberg (2008) framework and were discussed in Hursh and Roma (2013, 2016). 

These studies included three adult rhesus monkeys as the primary participants. The Ko et al. 

(2002) study included analyses comparing the relative reinforcing effects of three 𝜇-opioid 

agonists (fentanyl, alfentanil, and remifentanil). These data are useful for evaluating demand 

models because three dosages of each drug were evaluated and the potencies of the drugs 

spanned a two-log range. The design of the Hursh and Silberberg (2008) framework is such that 

the Q0 parameter controls for differences in dose and potency (reinforcer magnitude) and the α 

parameter reflects sensitivity to price in conjunction with the span parameter, k. At the same 

 
8 Unit elasticity is calculated as relative change in consumption (Q) divided by relative change in price (P), both in 
natural units. Tools for calculation of PMAX and OMAX are available at 
https://www.smallnstats.com/index.php?page=ZBE and https://ibrinc.org/behavioral-economics-tools/. 
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time, the three opiates all have rapid times to onset of action and should be very similar in value 

as reinforcers and have equal or nearly equal α terms as reported by Hursh and Roma (2013) 

using the EXPL model. 

Data from Winger et al. (2002) were also obtained to evaluate relative reinforcing effects 

across agonists. Specifically, this study evaluated the reinforcing effects of three NMDA agonists 

(ketamine, phencyclidine, and dizocilpine). These three drugs were selected because they have 

distinctly different delays to onset of peak pharmacological action and the original study 

indicated that this factor rank ordered the drugs in terms of PMAX. In a subsequent analysis using 

the EXPL model, Hursh and Roma (2016) reported that the αs also rank ordered the drugs based 

on time to peak action. As in Ko et al. (2002), three doses of each drug were used and ideally the 

α term would be constant across doses but vary between drugs and different times to peak action. 

Original data from both studies were used to evaluate how well each model isolated 

variations in reinforcer magnitude (e.g., dose) using respective Q0 parameters while 

simultaneously representing the sensitivity to price with a single, shared 𝛼 parameter. In addition 

to replicating earlier group-level analyses (which averaged zero and non-zero consumption 

across prices), data at the individual case-level were revisited with the IHS scale. This 

exploratory modeling of individual consumption was pursued as a complement to group-level 

analyses, in this regard, to illustrate how the ZBEn model performed with the complete case-

level data previously unusable in the original framework. 

Dosage-level Demand Effect Analytical Plans 

 Data from Ko et al. (2002) and Winger et al. (2002) were re-analyzed using a GraphPad 

Prism 8 template customized to apply candidate models. In contrast with the earlier simulation, 

the empirical data were modeled with the ZBEn model (Eq 9) to uncouple the 𝛼 parameter from 



ZERO-BOUNDED EXPONENTIAL  

  
 

19

differences in span, see Table 1. Individual-level data were evaluated using the EXPL, EXPD, 

and ZBEn (Eq 9) models. These individual data contained some zero consumption values; 

specifically, the Ko et al. (2002) data set consisted of 2.2% zero consumption values (3/135) and 

the Winger et al. (2002) data set consisted of 9.4% zero consumption values (15/160). As 

indicated in Winger et al. (2002), due to an oversight during the experiment data points for two 

monkeys were missing (dizocilpine 0.003 mg/kg at FR1). In keeping with existing conventions, 

parameter k was included in the EXPL and EXPD models, and this value was fitted along with 

the other fitted parameters. This behavior was retained to compare the performance of ZBEn to 

existing models consistent with their current and historical applications. For models including 

parameter k, this parameter was fitted globally. Although not without its issues, the R2 was 

reported as a general goodness-of-fit metric given that each model was fitted on a different scale. 

Specifically, each R2 value reflected variability for each of the monkeys within each drug.  

To evaluate the degree to which demand for each drug across doses was accommodated 

by a single, shared 𝛼 parameter, models were compared using the Akaike’s Information Criteria 

(Akaike, 1974) corrected for small sample sizes (AICc). The comparison logic of AICc is like 

that of the Extra-Sum-of-Squares F-test and evaluates changes in the residual sum-of-squares 

against differences in the degrees of freedom. That is, the model with varying 𝛼 parameters has 

fewer degrees of freedom than the model with a shared 𝛼 parameter. AICc was preferred because 

it yields a probability measure, rather than a p-value, to describe the likelihood the data were 

generated from each respective model. 
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Results 

Simulation Study: Koffarnus et al. (2015) 

 The overall distributions of PMAX and intensity (i.e., Q0) derived from each model are 

illustrated in Figure 3. Overall, PMAX and Q0 derived from each of the three 2-parameter models 

were similar to their empirical alternatives. Regarding PMAX, Spearman correlations between 

empirical and derived estimates were overall strongest when zero consumption values were 

omitted in the EXPL model (rs = 0.695, p < .0001). Within the models that included zero values, 

the relationships between empirical and derived estimates of PMAX were stronger for the direct 

restatement of ZBE model (rs = 0.389, p < .0001) than the EXPD model (rs = 0.268, p < .0001). 

Similarly, correlations between empirical and derived estimates of demand intensity were strong 

for the EXPL (rs = 0.942, p = 0) and ZBE models (rs = 0.848, p = 0) models but strongest for the 

EXPD model (rs = 0.962, p = 0). 

Re-Analysis of Ko et al. (2002) 

Data from Ko et al. (2002) were used to evaluate the demand for three rapidly acting 

opiates with a similar time to onset of action. These data were re-analyzed with each of the three 

model candidates and the results from each are illustrated in Figure 4. Results from AICc for 

data fit using the ZBEn model suggested a single 𝛼 for alfentanil (87.33%) and fentanyl 

(64.73%) but did not accommodate a single 𝛼 for remifentanil (25.28%). Fits to the available 

data revealed that the EXPL did not accommodate the different doses for any of the three drugs. 

The probability the data were generated from a single 𝛼 was 48.47%, 0.17%, and 19.12% for 

alfentanil, remifentanil, and fentanyl, respectively. Finally, fits using the EXPD suggested this 

model accommodated a single 𝛼 for the different doses of all three drugs. Specifically, results 
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from AICc indicating the data were generated from a single 𝛼 was 94.50%, 66.66%, and 93.22% 

for alfentanil, remifentanil, and fentanyl, respectively.  

Re-Analysis of Winger et al. (2002) 

Data from Winger et al. (2002) were gathered to evaluate the demand for three NMDA 

agonists that differed in their delay to peak onset. These data were re-analyzed with each of the 

three model candidates and the results from each of the models are illustrated in Figure 5. 

Results of AICc for the ZBEn revealed the model accommodated a single 𝛼 for ketamine 

(85.05%), phencyclidine (82.68%), and dizocilpine (73.58%). Fits to the available data revealed 

that the EXPL accommodated a single 𝛼 for ketamine (94.04%) and phencyclidine (90.29%), but 

not dizocilpine (43.86%). Finally, results from AICc for the EXPD revealed the model 

accommodated a single 𝛼 for ketamine (93.38%) and phencyclidine (91.90%), but not 

dizocilpine (0.13%). All three models preserved sensitivity of 𝛼 to differences across drugs in 

terms of time to peak effect (Figure 5), wherein ketamine (time to peak effect: 1 min) resulted in 

the smallest 𝛼s, phencyclidine (time to peak effect: 10 min) resulted in intermediate 𝛼s, and 

dizocilpine (time to peak effect: 32 min) resulted in the largest 𝛼s. 

Case-level Analyses for Ko, et al. (2002) and Winger, et al. (2002) 

The Ko et al. (2002) data included three drugs and three doses across three primates. This 

provided nine dose-families of demand curves for the three drugs and three subjects. Using the 

ZBEn model and GraphPad Prism 8, the 𝛼s for all nine sets of curves were similar across doses 

(AICc range from 99.9% to 71.6%). In addition, the 𝛼s were similar for the three opiates; α  for 

alfentanil and remifentanil were similar within subjects and lower than α for fentanyl, consistent 

with the previous analysis in Hursh and Roma (2013). 
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The Winger et al. (2002) study evaluated NMDA agonists (ketamine, phencyclidine, and 

dizocilpine). As in Ko et al. (2002), this resulted in nine dose-families of demand curves for 

three drugs and three subjects. Using the ZBEn model, the 𝛼s for all nine sets of curves were 

similar across doses (AICc range from 97.7% to 59.6%). In addition, the 𝛼s were ordered in 

increasing α (sensitivity to price) from ketamine, to phencyclidine, to dizocilpine, consistent with 

the previous analysis in Hursh and Roma (2016). Although all 18 demand curve comparisons 

from these two studies showed consistent values of α across dose, it warrants noting that these 

exploratory case-level evaluations lack sufficient power to detect small differences in the α term 

and do not account for intrasubject correlations. 

Discussion 

 The behavioral economic concept of demand is increasingly applied across disciplines 

and to various types of consumer choices. Along with this more diverse application, the types 

and compositions of data used in this framework have grown as well (e.g., hypothetical purchase 

tasks). However, the existing models for characterizing operant demand each present with 

respective challenges and these challenges are barriers to future applications. Among these 

challenges, debates continue regarding how to handle zero consumption values while retaining 

the underlying log scale in the framework put forth in Hursh and Silberberg (2008). For instance, 

advocates of the EXPD model have encouraged the retention of the log scale to represent the 

span of the demand curve (i.e., k) but the use of the linear scale to evaluate changes in 

consumption. In this way, zero consumption values may be included in the regression. Although 

this approach has proved beneficial (González‐Roz, Jackson, Murphy, Rohsenow, & MacKillop, 

2019; Strickland, Campbell, Lile, & Stoops, 2019; Strickland, Lile, Rush, & Stoops, 2016; 

Zvorsky et al., 2019), the exponentiation of terms in the EXPL model does not provide a full 
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solution to the challenges introduced by the log scale. For instance, models of demand using the 

log scale are restricted to non-zero asymptotes and observed consumption at very high prices is 

likely to reach zero. The goal of this report was to introduce a novel implementation of the Hursh 

and Silberberg (2008) framework that used the IHS scale in lieu of the log scale. The use of the 

IHS in operant demand mirrors trends in statistics and economics, as this scale has been used in 

economic analyses to accommodate zero values (Bahar & Rapoport, 2018; Clemens & Tiongson, 

2017). 

The ZBE model applied here performed well across a variety of compositions of data. 

Specifically, the ZBE model performed well across data consistent with hypothetical purchase 

task data as well as those observed in basic lab experiments. In simulations designed to resemble 

the variable responding frequently observed on hypothetical purchase tasks, the ZBE model 

provided estimates that corresponded well with empirical estimates of PMAX. Similarly, the ZBE 

model provided estimates of demand intensity that corresponded well with the observed data. 

However, it warrants noting that the ZBE model showed slightly lower correspondence than the 

EXPD model in this regard. Similarly, re-analyses of basic research revealed that the ZBEn 

model with normalized  and the EXPD model represented sensitivity to changes in prices with 

a shared 𝛼 across most combinations of dosages. At the same time, normalized  values 

remained sensitive to differences in the value of drugs as reinforcers, such that the value of  

increased (more sensitive to price effects) with longer times to peak effect, see Figure 5. 

 Successful demonstrations using the ZBE and ZBEn models naturally evoke questions 

regarding how researchers should analyze operate demand data moving forward. As with any 

statistical decision-making, the analytical approach should be carefully selected and evaluated 

against existing alternatives. Among the strengths of this novel approach, a log10-like scale is 
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exceptional in that it is capable of both accommodating and modeling consumption at zero. The 

ZBE models are alone in this regard because both the EXPL and EXPD models are ultimately 

limited by the underlying log scale. Free of this limitation, the ZBE models may be further 

extended to applications where questions of zero consumption are a major factor. For instance, 

the ZBE model might be useful in cross-price demand assays to predict the price at which a base 

commodity is completely substituted, i.e. consumption of that good is fully suppressed. Although 

not explicitly modeled here, the IHS scale and application is suitable for use in cross-price 

analyses though the same caveats apply (i.e., changes below the index behave differently than 

those above the index). Scenarios such as the one noted here support the use of the ZBE models, 

though outside of such specialized questions it is plausible that existing models might be more 

easily applied and interpreted. 

Although we report findings that the three models tested here (EXPL, EXPD, ZBE) all 

performed well across simulated and experimental data (to varying degrees), we suggest 

researchers consider the ZBE model for several reasons. First, the ZBE model succeeds in both 

fitting and modeling zero consumption. That is, the ZBE model extends the operant demand 

framework by providing means to achieve a lower asymptote at zero. When plotted in IHS-IHS 

coordinates, this defines an S-shaped demand curve originally suggested by Hursh and 

Silberberg (2008). This refers to an upper bound at Q0 and an absolute lower bound at either a 

zero or non-zero asymptote. The IHS scale furthers this intent of this framework because log 

units restrict all projections of demand to non-zero asymptotes. Although Hursh (2018) made the 

case for non-zero asymptotic demand for certain luxury goods, such as fractional ownership of 

executive jets and leasing of limousines, the problem with modeling demand using the log scale 

is that we must presume that all commodities have non-zero lower asymptotes. Whereas this may 
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not be true for most goods, considering that there are often cheaper alternatives that can and will 

drive demand to zero at high prices, there are instances where goods are demanded well above 

the prices assessed. Among such scenarios, the ZBE has equal utility (i.e., a separate span 

parameter can be included as needed). 

 In a more pragmatic sense, the ZBE model supports a more flexible implementation of 

the Hursh and Silberberg (2008) framework that requires fewer parameters. For instance, in 

cases where levels of consumption reach zero, the full range of consumption values is ultimately 

the intercept (i.e. demand intensity – Q0). This removes the need for a span parameter in these 

instances. In these situations, the IHS scale supports an interpretation of demand that can exist 

free from parameter k and the variability it introduces in research (Kaplan, Foster, et al., 2018). 

Although removing the explicit span parameter often simplifies parameter estimation, 

comparison, and interpretation, situations may exist when an explicit span parameter is 

beneficial. That is, Q0 serves as an excellent substitute for k when the full range of the demand 

curve ranges from Q0 to zero but this may not be the case when the span of the demand curve 

falls far short of zero. In such situations, the ZBE model can be adjusted to include an explicit 

span parameter as necessary. Furthermore, model complexity can be formally evaluated on a 

case-by-case basis via traditional model selection tools (e.g., AICc). Second, the normalization 

of 𝛼 decouples its relation to k and instead couples it to the case-level Q0 parameter. This was 

demonstrated in the re-analyses of drug dosage data, as the normalized 𝛼 supports comparisons 

of demand even in instances where the spans differ (i.e., there was no shared span value). 

However, it warrants noting that this has the added effect of limiting comparisons of Q0 and 𝛼 to 

earlier models (e.g., EXPL, EXPD). That is, parameter estimates from the ZBEn model are 
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unlikely to remain as closely related to other models when a normalization is applied and any 

comparisons should proceed with caution. 

 Lastly, the ZBE model and the underlying IHS scale behave sufficiently log10-like that 

differences associated with the error term are minimized, if not eliminated. That is, the behavior 

of the error term is consistent with the original implementation of the Hursh and Silberberg 

(2008) framework, e.g. evaluating demand across magnitudes (e.g., dose). As such, the log10-like 

scale presented here provides the most desirable features of the log scale without the issues 

associated with zero values. We note here that evaluations across reinforcer magnitudes can 

succeed in the linear scale; however, error estimates in this state are likely to vary considerably 

across magnitudes and occasionally provide results that differ from the EXPL and ZBE models. 

Limitations and Further Research 

 This report presented and evaluated a method for evaluating operant demand using a 

log10-like scale, the IHS transformation. Although the log scale is an effective tool in many areas 

of economics, its use in operant demand research is often frustrated by zero values. For this 

reason, an exploration of alternative scales is both timely and appropriate. While the IHS 

transformation is promising, it warrants re-iterating that the transformation presented here is 

ultimately one of several that could extend the Hursh and Silberberg (2008) framework and its 

future implementations. For example, alternatives might be derived from the BC family of 

transformations (e.g., BC and generalized BC, modulus). Although alternatives surely exist, it is 

most likely that the resulting transformations will ultimately reflect the same orderly distribution 

of values and will not further enhance the analysis. For instance, transformations using the log 

scale with Euler’s number as a base will differ from transformation using the log scale with 10 as 
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a base, but the orderly relationship between values remains the same. As such, the IHS 

transformation is likely just one of many transformations suited to evaluating operant demand. 

 Although the IHS scale presented here preserved the orderly distribution of observed 

consumption values, we must re-iterate that the departure from the log scale has the potential to 

introduce new sources of variability. The IHS scale presented here is one that has been 

customized to emulate the log10 scale, and as such, is virtually identical to the log10 scale for 

values at 10 and above. However, it is the expected behavior of the IHS scale to differ from the 

log10 scale when values are below 10 and ultimately approach zero. Within this range, values 

arising from both the log10 and IHS scale remain orderly and related, but ultimately differ, and 

this will influence estimates of elasticity in the range of values nearing zero. For example, IHS 

and log transforms are within 2% for a data value of 5, and the difference is less than 10% down 

to a value of 3. Although these differences are small, the relationship between PMAX and unit 

elasticity (derived via differentiation) is lost when one or both dimensions are below the index 

value (10) and PMAX in IHS-IHS scale will not correspond with an elasticity value of −1. As 

such, differentiation can be used to solve for −1 but this solution may yield a value of 

proportional change that does not use constant units. Put simply, solutions here may approximate 

PMAX but ultimately differ when demand is reconstituted in the natural scale. Given this 

variability, we recommend that users more simply evaluate the OMAX in the natural scale using 

one of the tools provided here. 

Conclusions 

 The IHS scale and the ZBE models presented here represent a novel implementation of 

contemporary methods used in operant demand. Novel implementations were necessary to fulfill 

the original goals of the Hursh and Silberberg (2008) framework. In particular, the ZBEn model 
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with normalized  (Eq 9) addresses several of the pragmatic and conceptual limitations of the 

original EXPL model. Specifically, it accommodates zero consumption data, eliminates the need 

for the k parameter (which complicates fitting and comparisons), and addresses the potential 

covariance of  with differences in span (k). Further, the ZBEn model appears to perform as well 

and, in some cases, better than existing models in a range of basic and applied cases. As such, we 

advocate for further exploration and validation of the ZBE model but caution researchers not to 

presume that any single model or combination will best characterize all instances of operant 

demand. That is, we do not advocate for researchers to abandon the EXPL or EXPD models 

altogether if those alternatives can answer research questions with fewer sources of variability 

and complexity. For example, in the absence of zero consumption values, it may be simpler and 

more pragmatic to use an earlier model (e.g., EXPL). In conclusion, we encourage researchers to 

consider the IHS scale and other log-like transformations that may extend the ZBE model. 
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Appendix 

Calculations for mean squared percentage error in the Exponential model of operant demand 

This section of the appendix illustrates how least squares regression performed in the log scale represents error as a proportion, rather 
than an absolute difference between a projected function and observed data. In this hypothetical demand series, a fitted function with a 
Q0 of 1171, a K of 1.5, and an α of 0.00006 is applied to the following prices and observed consumption. As highlighted in the grey 
portions, the residual error on the log scale (Log10 Error) is the logarithm of the ratio of demand to consumption—itself a form of a 
percentage.s 
 

Price Consumption 
Log10 

Consumption 
Log10 

Demand 
Log10 
Error 

Linear 
Demand 

Linear Demand

Consumption
 Logଵ଴ ൬

Linear Demand

Consumption
൰ 

0 1000 3 3.068556 0.068556 1171 1.171 0.068556 
0.5 1000 3 3.016776 0.016776 1039.38570 1.039385 0.016776 
1 1000 3 2.966784 -0.033215 926.369053 0.926369 -0.033215 

1.5 800 2.90309 2.918517 0.015427 828.928538 1.036160 0.015427 
2 800 2.90309 2.871916 -0.031173 744.588501 0.930735 -0.031173 

2.5 700 2.845098 2.826924 -0.018173 671.311708 0.959016 -0.018173 
3 600 2.778151 2.783485 0.005334 607.414633 1.012357 0.005334 
4 500 2.69897 2.701054 0.002084 502.405167 1.004810 0.002084 
5 400 2.60206 2.624215 0.022155 420.935719 1.052339 0.022156 
10 200 2.30103 2.311500 0.010470 204.880527 1.024402 0.010471 
15 100 2 2.091420 0.091420 123.429897 1.234298 0.091420 
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Determination of Parameter 𝜽 in IHS Transformation 

The 𝜃 value used in this report was determined through a process of maximum likelihood 
estimation designed to minimize the difference between the IHS and natural log and log10 
transformations. That is, the IHS transformation was designed to simulate the natural log via 𝜃 
and log10 via 𝜃 prior to casting the IHS into log10 units, i.e., ln(10). The figure below illustrates 
the best fit 𝜃 values of 0.4599 and 0.4987 for the natural log and log10 transformations, 
respectively. A difference exists here because the IHS transformation in log10 units essentially 
involves a sequence of two transformations. As a matter of convenience, we adopted a 𝜃 of 0.5 
for use in subsequent formulae simulating the log10 transformation. 
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Table 1 

Structure of Individual Model Candidates 

Model Three-Parameter Form Two-Parameter Form 

EXPL 𝑙𝑜𝑔ଵ଴𝑄଴ + 𝑘(𝑒ି∝ொబ௫ − 1) 𝑙𝑜𝑔ଵ଴𝑄଴ + 𝑙𝑜𝑔ଵ଴𝑄଴(𝑒ି∝ொబ௫ − 1) 

EXPD 𝑄଴ ∗ 10௞൫௘ష∝ೂబೣିଵ൯ 𝑄଴ ∗ 10௟௢௚భబொబ൫௘ష∝ೂబೣିଵ൯ 

ZBE 𝐼𝐻𝑆(𝑄଴) + 𝑘(𝑒ି∝ொబ௫ − 1) 𝐼𝐻𝑆(𝑄଴) + 𝐼𝐻𝑆(𝑄଴) ∗ (𝑒ି∝ொబ௫ − 1) 

ZBE (Normalized ∝) 𝐼𝐻𝑆(𝑄଴) + 𝑘(𝑒ି
∝
௞

ொబ௫ − 1)  𝐼𝐻𝑆(𝑄଴) ∗ (𝑒
ି

∝
ூுௌ(ொబ)

ொబ௫
) 

 

Table 1 depicts 2- and 3-parameter model structures across the three candidate models. 

Parameter k in respective models represents the range of demand in units of the respective scale 

(i.e., log, IHS). The normalized α form is presented as a method to support model evaluation 

across multiple demand levels when demand intensity varies with doses of a drug or magnitudes 

of reinforcement. 
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Figure 1. Comparison of the Log10 and IHS Transformations 

 

This figure illustrates how each transformation corresponds across a range of consumption 

values, including zero. The log10 transformation changes dramatically as it approaches zero while 

the modified IHS transformation is approximate to the log10 at values ~10 and smoothly 

approaches zero at lesser values. 
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Figure 2. IHS Transformation across Zero-valued Data Situations 

 

These plots illustrate how the IHS transformation makes the ZBE model robust at zero and near-

zero consumption. Model results remain consistent across conditions where zero consumption 

data are retained or modified.  
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Figure 3. Simulated Comparisons from Koffarnus et al. (2015) 

 

This figure illustrates the overall distribution of values associated with PMAX and intensity (Q0). 

The IHS transformed model consistently supported estimates that closely related to the empirical 

data. 
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Figure 4. Ko et al. (2002) Study Data using ZBEn, EXPL, and EXPD Models 

 

This figure illustrates how each model accommodates demand curve analysis across dosage 

levels for each of the three drugs. Results from AICc indicate whether the test preferred the 

model with a same alpha or the model with different alphas. The percentages indicate the 

probability associated with that conclusion. Results of the AICc comparisons suggested the 

EXPL model was unable to describe doses using a single  for any of the drugs; the EXPD 

model was able to describe doses using a single  for all three drugs; and the ZBEn model was 

able to describe doses using a single  for alfentanil and fentanyl, but not remifentanil. 
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Figure 5. Winger et al. (2002) Study Data using ZBEn, EXPL, and EXPD Models  
 

 
This figure illustrates how each model accommodates demand curve analysis across dosage 

levels for each of the three drugs and relative magnitude of the  across drugs that differ in their 

delay to peak effects. Results of the AICc comparisons suggested the EXPL model was able to 

describe doses using a single  for ketamine and phencyclidine, but not dizocilpine; the EXPD 

model was also able to describe doses using a single  for ketamine and phencyclidine, but not 

dizocilpine; and the ZBE-n model was able to describe doses using a single  for all three drugs. 

All three models revealed relatively orderly differences in  related to time to peak effect with 

smallest s for ketamine, intermediate for phencyclidine, and largest for dizocilpine. 
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EXPL EXPDZBEn

Ketamine
Time to Peak Effect: 1 min

Phencyclidine
Time to Peak Effect: 10 min

Dizocilpine
Time to Peak Effect: 32 min

0.003 mg/kg

0.01 mg/kg

0.03 mg/kg

0.003 mg/kg

0.001 mg/kg

0.0003 mg/kg

0.03 mg/kg

0.1 mg/kg

0.3 mg/kg
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