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Abstract 

The operant demand framework has achieved high levels of adoption as an approach to 

quantify how various ecological factors influence choice and consumption. A central goal of the 

framework proposed by Hursh and Silberburg (2008) was to isolate the “essential value” of 

reinforcers; namely, their effects on behavior, given various contextual factors. The effect of 

reinforcers on behavior is a phenomenon that is expected to vary as a function of dosage (i.e., 

units of reinforcement), price (i.e., schedule requirements), the intensity of demand (i.e., baseline 

consumption), the availability of reinforcers (i.e., supply, presence of alternatives), and the 

individual’s current and historical context. This technical report provides a historical summary of 

the concept, describes the quantitative basis for essential value in the framework of Hursh and 

Silberburg (2008), reviews prior attempts to approximate a generalizable index of essential 

value, and presents a newer formulation using exact solution to provide a more succinct and 

durable index. Proofs and solutions are provided to clarify the bases for novel and existing 

representations of essential value. Recommendations are provided to improve the precision and 

accuracy of behavioral economic metrics as well as support consensus regarding their 

interpretation in the operant demand framework. 

Keywords: operant demand, behavioral economics, essential value, elasticity 
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Introduction 

Basic and applied work in operant behavioral economics investigates how various factors 

contribute to individual patterns of choice and consumption (e.g., price, availability of 

alternatives; see Reed et al., 2013, for an introduction). Within this paradigm, research evaluating 

these factors has used one or more of the models derived from the framework of Hursh and 

Silberberg (2008). This framework, an experimental translation of microeconomics, has been 

used by various teams to explore how an operant behavioral economic account can be extended 

to choices related to health outcomes (e.g., Bickel et al., 2016; Reed et al., 2022; for a review, 

see Hursh, 2000), the consumption of addictive substances (e.g., Acuff et al., 2020; Amlung et 

al., 2015; González‐Roz et al., 2019), and other forms of "risky" or unsafe choices, such as 

unprotected sexual behavior (Harsin et al., 2021; Strickland et al., 2020) or non-adherence to 

prescribed medication regimens (Jarmolowicz et al., 2020). This approach has also been directed 

to various other forms of health and wellness initiatives, such as COVID-19 vaccination (Hursh 

et al., 2020; Strickland et al., 2022), healthy tanning practices (Becirevic et al., 2017; Reed et al., 

2016), and choices related to therapies (e.g., demand for evidence-based practices; Gilroy et al., 

2022; Gilroy & Feck, 2022; Gilroy & Picardo, 2022) and the reinforcing effects of elements 

included in such therapies (e.g., schedules of reinforcement; Gilroy, Ford, et al., 2019; Gilroy, 

Waits, et al., 2021). 

The most common approaches to evaluating the influence of ecological factors on 

reinforcer consumption are derived from the framework presented by Hursh and Silberberg 

(2008). This framework has been used broadly across a range of reinforcers (e.g., goods, 

services), with both real and hypothetical outcomes (see Amlung et al., 2012, for a relevant 

evaluation), and the specific modeling strategy has evolved through various iterations. The latest 
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and most recent iteration of the Hursh and Silberberg (2008) framework was introduced to 

address some of the historical challenges associated with the earliest model of operant demand—

the Linear-Elasticity model (Hursh et al., 1989). The structure of the Linear-Elasticity model is 

presented in Equation 1. 

𝑙𝑛𝑄 = 𝑙𝑛𝐿 + 𝑏𝑙𝑛𝑃 − 𝑎𝑃      ( 1 

In the Linear-Elasticity model, there are three parameters that each correspond with reinforcer 

consumption. Functioning as an intercept and an index of demand intensity, parameter L reflects 

the projected level of consumption at a P of 1 (i.e., intercept of 0 in the log scale). The 

responsiveness to changes in price is jointly represented by two rate parameters, a and b. Briefly, 

the linear aspect of this model refers to the constant, linear sensitivity to both relative (i.e., b) and 

absolute changes across prices (i.e., a). Hursh et al. (1989) described parameter b as "[the] initial 

downward slope of the demand curve." That is, if presented alone (i.e., without the 𝑎𝑃 

interaction), this parameter would serve as a parameterized form of elasticity (see Gilroy et al., 

2020, for a discussion of elasticity in operant demand). Parameter a represents the rate of change 

in elasticity per every absolute unit increase in P. The joint influence of these parameters 

establishes a linear model that approximates a non-linear form (i.e., the molar rate of change in 

elasticity differs across prices and is not constant). Despite initial success using this approach, 

Hursh and Silberberg (2008) presented a successor to this model to address the analytical 

challenges associated with representing rates of change in elasticity using multiple parameters 

(i.e., a, b), which each reflected sensitivity to price in different ways. The structure of this newer 

model, the Exponential model of operant demand, is displayed in Equation 2. 



ESSENTIAL VALUE  5 
 

 

𝑙𝑜𝑔ଵ଴𝑄 = 𝑙𝑜𝑔ଵ଴𝑄଴ + 𝑘(𝑒ିఈொబ௉ − 1)     ( 2 

This updated approach represented the rate of change in elasticity using a single 

parameter (i.e., ) and this simplified interpretation in several ways. However, it warrants noting 

that both the Linear-Elasticity and the Exponential models are fitted with three parameters. The 

Exponential model reduced the complexity of the model in some ways (i.e., a single parameter 

reflects the rate of change in elasticity) but introduced a novel parameter, k, to represent the span 

of the fitted demand curve in log units. This simplified the quantification of rates of change in 

elasticity but complicated the interpretation of that quantity. That is, the rate constant  could be 

easily compared in studies where the span constant was fixed (i.e., same ks) but could not be 

compared across studies or cases when parameter k varied. 

Essential Value in Operant Demand 

A central goal of the Exponential model presented in Hursh and Silberberg (2008) was to 

isolate reinforcer effects to a single parameter. These effects, occasionally referred to as 

reinforcer potency (e.g., Penrod et al., 2008) or stimulus effects (e.g., DeLeon et al., 2009), 

generally describe the effect that some stimuli or event has on behavior, given context. Hursh 

and Silberberg (2008) reflected upon prior and contemporary attempts to index the 'strength' of 

reinforcer effects, an early goal of Skinner and a reinforcer-based account of behavior (see 

Skinner, 1932). In this more recent account, Hursh and Silberberg (2008) highlighted several 

contributions of a behavioral economic account of reinforcer ‘strength’; namely, the ability to 

account for the effects of present income and variations in price—areas in which matching 

theory was not well-suited to explain. In a view of reinforcer effects using behavioral economic 

theory (i.e., operant demand), these effects are scaled as a function of price and economy type 

(i.e., from open to closed), and the scaling of these effects was termed essential value. Put 
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simply, reinforcers that demonstrate only a slight decrease in consumption in the presence of 

available alternatives (i.e., open economy) and/or rising prices are said to demonstrate higher 

value, and this suggests that the reinforcer is more essential to the organism. Similarly, the term 

value is abstracted from observed rates of behavior, wherein value is linked to the amount of 

responding demonstrated across various schedules. 

Although these concepts are quite straightforward, two details warrant noting. First, value 

in this context is linked to work, wherein the organism must pay to access reinforcers across 

various schedules of reinforcement. Peak work, as illustrated by the point of unit elasticity in the 

demand curve (i.e., PMAX) or maximal responding in the work output function (i.e., OMAX), 

provides a reference point for distinguishing inelastic and elastic changes in price. Said a bit 

more directly, higher degrees of essential value correspond with higher prices observed in the 

inelastic range of consumption. As astutely noted by Hursh and Roma (2016), “The value of 

[essential value] EV … is linearly related to the price at which demand elasticity is 1, and overall 

responding is maximal, that is, the price point we call PMAX.” As such, essential value, the price 

associated with peak work, and the rate of change in elasticity are highly related. Second, it is 

necessary to restate that essential value is not some innate quality of a reinforcer and instead 

refers most directly to the price associated with peak work and the context in which that work 

was performed. That is, the amount of responding paid by the organism across schedules is 

inevitably tethered to both context (e.g., prices, economy type, dosage/units of reinforcement) 

and the organism’s learning history (see Strickland et al., 2022, for further discussion of this 

point). 

The approach presented by Hursh and Silberberg (2008) took two steps to isolate the 

essential value of reinforcers to a single rate parameter (𝛼). First, the intercept (𝑄଴) optimized 
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such that the intensity of demand and other dosage or potency effects could be interpreted as a 

quantity separate from essential value (𝛼). That is, 𝑄଴ represents the baseline level of demand 

intensity and is independent of the scaling effects of price (i.e., 𝑄଴ = Q at P of 0). Baseline 

consumption and other dosage-level differences are indexed independently of essential value (𝛼) 

because reinforcer deliveries are inevitably linked to the unit of reinforcer delivered (i.e., 

magnitude; e.g., 50 infusions at 0.1 ml/kg vs. 100 infusions at 0.05 ml/kg; see Hursh et al., 1988, 

for relevant example). 

Second, and related to the first, the effects of price were standardized across levels of 

consumption (and individuals) by referencing demand intensity in the scaling of essential value 

(𝛼) as a function of price within individual fits. This is expressed more clearly by referencing the 

exponent of Equation 2, wherein the effect of price (P) is multiplied by the intensity of demand 

(𝑄଴). When arranged in this manner, estimates of 𝛼 dependent on the 𝑄଴𝑃 interaction to provide 

price scaling that is relevant to the data series. Doing so facilitates statistical comparisons for 

parameter 𝛼 because differences in 𝑄଴ are accounted for in the scaling of P. Hursh and 

Silberberg (2008) referred to this correction as a “standardization to price”, a change that 

permitted direct comparisons of essential value (𝛼) when levels of demand intensity and/or dose 

differed, so long as parameter k remained constant across cases. 

Although the framework proposed by Hursh and Silberberg (2008) achieved the goal of 

isolating essential value to a single parameter (𝛼), the approach operated under two assumptions 

that frustrated research synthesis. The first assumption was that all organisms or groups within a 

study demonstrated a comparable range of consumption as measured by logarithmic differences 

between upper and lower limits (see Gilroy, 2022, for a review of limits). This is particularly 

problematic when drawing comparisons between clinical and non-clinical groups, which may 
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differ considerably in their range of reinforcer consumption (or non-consumption). The second 

assumption was that a shared span was simultaneously appropriate for all patterns of 

consumption for individuals in a group or study. Indeed, some individuals participating in 

Hypothetical Purchase Tasks may endorse purely inelastic consumption, and in such cases, there 

is ultimately no range to model. To deviate from these assumptions and allow the span of fitted 

demand curves to vary across cases or groups would prohibit direct comparisons of 𝛼, as this 

parameter is inherently linked to units of 𝑄଴ and k. This issue associated with varying span 

constants remains a challenge in the framework of Hursh and Silberberg (2008) (see Gilroy, 

Kaplan, et al., 2021, for some potential alternative approaches). 

Abstracting Essential Value from Varying Spans 

Challenges associated with varying k values prompted an exploration of alternative 

methods for indexing essential value. Hursh and Roma (2016) introduced an approach to 

describe how 𝛼 and k jointly reflected rates of change in elasticity and used this relationship to 

construct a general index of essential value. That is, this index would reflect a general definition 

of essential value that was not limited to direct interpretations and comparisons of parameter 𝛼. 

This measure, hereafter referred to as the generalized measure of Essential Value (EV), is shown 

in Equation 3 and described in greater detail in the Appendix.1 

𝐸𝑉 ≅  
ଵ

ఈொబ௞భ.ఱ
       ( 3 

The goal of this approach was to provide a general index of essential value that could better 

support research synthesis in operant demand (Hursh, 2014; Hursh & Roma, 2016). 

A Descriptive Model of Essential Value 

 
1 In addition to the content outlined in the Appendix, the full data set and source code necessary to recreate this work 
and all figures are available at https://github.com/miyamot0/Essential-Value-Demand  
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Hursh (2014) presented the clinical and empirical bases from which formed the 

generalized measure of EV. Specifically, a clinical model was constructed to describe the 

observed relationship between parameters 𝛼 and k. Hursh (2014) fitted various instances of the 

Exponential model of operant demand to data collected during various drug self-administration 

studies (e.g., Hursh & Winger, 1995; Ko et al., 2002). Fits varied in terms of pre-defined k values 

and the resulting 𝛼 values were used to visualize the relationship between parameters k and 𝛼. 

Visual inspection of these results confirmed the known, inverse relationship between these two 

parameters. From these findings, Hursh (2014) concluded that this relationship between the two 

parameters could be described as a decaying power function. Fitting a power function to these 

data (i.e., 𝛼 ~ 𝑣𝑘௦), Hursh (2014) found evidence to suggest that an average rate constant of -1.5 

could describe this relationship for k values ranging from 1 to 5, see Equation 4 and the 

Appendix. 

𝛼 ≈ 𝑣𝑘ିଵ.ହ      ( 4 

Using this descriptive model as a point of reference, Hursh (2014) rearranged the terms such that 

both 𝛼 and the power function were jointly represented by a general value parameter, v. This 

rearrangement served to isolate the 𝛼 by k interaction. This rearrangement of terms is illustrated 

in Equation 5. 

𝑣 ≈ 𝛼𝑘ଵ.ହ       ( 5 

From this expression of quantity v, Hursh (2014) advocated for the use of this index as a means 

to approximate essential value. The term generalized is emphasized here to highlight the use of 

the approach for both normalized (i.e., 𝑄଴ fixed at 100) and non-normalized types of 

consumption data (i.e., 𝑄଴ varying across fits). These two forms were introduced in an attempt to 

address variability associated with differing reinforcer units and price scaling (e.g., low dose, 
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high dose). At present, the most recent normalized form of the generalized model of EV, as 

presented by Hursh and Roma (2016), is provided in Equation 6. 

𝐸𝑉 ≈
ଵ

ఈ௞భ.ఱଵ଴଴
       ( 6 

Deconstructing a Descriptive Model of Essential Value 

The generalized model of EV is deconstructed in this work to clarify the nature of 

essential value, the way it may be derived, and its interpretation within the context of the Operant 

Demand Framework. To support a re-conceptualization of EV, the data from Ko et al. (2002) and 

Hursh & Winger (1995) analyzed in the earlier Hursh (2014) work are re-analyzed to facilitate a 

novel derivation for essential value via exact solution. Briefly, one of the goals of Ko et al. 

(2002) was to evaluate the essential value of three different drug reinforcers (i.e., opioids) that 

each varied in their delay to peak action. Only the drug self-administration data are re-analyzed 

from this work. Data featured in Hursh & Winger (1995) were derived from various prior drug 

self-administration studies. It warrants noting that Hursh & Winger (1995) was not an 

experimental work, per se, but the data included in that work are also re-analyzed to replicate the 

earlier approach outlined in Hursh (2014) and Hursh and Roma (2016). 

The data from Ko et al. (2002) and Hursh & Winger (1995) were re-analyzed using the 

Exponential model of demand and the strategy described by Hursh (2014), see Equation 4. 

Generalized least squares regressions were performed using the mean consumption of drugs 

across various prices and dosages, wherever relevant. Although inconsistent with the ordinary 

least squares approach used in Hursh (2014) and Hursh and Roma (2016), generalized least 

squares regression was used to address the known issues associated with the non-independence 

of reinforcer consumption data, e.g. repeated drug self-administration data across prices as well 
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as across multiple dosages (see Kaplan et al., 2021, for a review of these issues). A total of five 

analyses were performed for all drugs, each with a varying pre-set k value (i.e., 1.5, 2, 3, 4, 5). 

A re-analysis of these data confirmed the presence of an inverse relationship between 

parameters 𝛼 and k, whereby larger k values corresponded with smaller 𝛼 values for a given data 

series. Following the strategy outlined in Hursh (2014), Equation 4 was fitted using generalized 

least squares nonlinear to quantify the relationship between 𝛼 and varying k values. Referencing 

Equation 4, two quantities were estimated: an intercept value (I; v in the generalized model of 

EV) and a scaling constant that corresponded with the decaying power function (s; i.e., 𝛼 ≈ 𝐼𝑘௦). 

The results of these fits are displayed and illustrated in Figure 1. Inspection of the individually 

fitted scaling constants revealed a range from −1.12 to −1.77, which corresponds with the 

central value of −1.5 stated by Hursh (2014). Regarding EV calculations for Ko et al. (2002), 

specifically, the resulting EV values maintained the orderly ranking corresponding with delays to 

peak effects, see Figure 2.2 

As illustrated in Figure 2, the EV for drug reinforcers generally maintained an ordinal 

ranking across varying quantities for parameter k. Put simply, Hursh (2014) and Hursh and Roma 

(2016) specified an index that could support ordinal rankings across reinforcers when k values 

differed. Such an index should be a scalar value that is reflective of work, given context (e.g., 

economy type, dose). The ranking of these values would be reflective of the point (i.e., price) 

wherein peak responding was observed and, more specifically, the point from which further price 

increases are associated with declining levels of work. Similarly, the approach should be robust 

to differences in reinforcer units and dosage. The ordinal rankings observed across the varying k 

values suggested that it is possible to extract such an index. 

 
2 Note: Ko et al. (2002) explored Fentanyl, Alfentanil, and Remifentanil; However, all compounds explored by 
Hursh (2014) are presented in Figure 2. 
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Despite some success towards the original goal, there are three limitations to this 

approach that warrant further discussion. First, and this is the case with all empirical 

approximations, the exact relationship between parameters and features of the demand curve is 

not well understood. Indeed, Hursh (2014) described a strong correlation between EV and 𝑃ெ஺௑ 

and eventually based an approximation of 𝑃ெ஺௑ using the generalized model of EV without 

establishing the relationship between them (for an early discussion of this relationship, see 

Bentzley et al., 2013). Similarly, the fixed constant value of 1.5 (-1.5 in the power function) is 

differentially suited to describing the observed relationship between 𝛼 and k. Said another way, 

the approximation presented here introduces an unknown degree of error into all estimates and 

the amount of error introduced varies depending on the value of k. Second, this approach was 

investigated and evaluated using a limited range of k values, i.e., 𝑘 ∈ {1, … ,5}. Hursh (2014) 

noted that this approximation of EV was recommended only in situations wherein the k value fell 

within the interval of 1 and 5. This was explored in the current work and applying this approach 

with k values up to 10 yields an overall fitted power function constant that falls below a value of 

1, and the overall expression for EV no longer functions as originally intended. Third, and 

related to the prior points, the general model here does not explain how essential value relates to 

relevant model parameters (e.g., rates of change in elasticity; 𝛼), context (e.g., dosage-level 

factors; 𝑄଴), and other integrative features of the demand curve (e.g., PMAX). This is particularly 

apparent for demand intensity, given that 𝛼 relies on both k and 𝑄଴ to establish units. For these 

reasons, additional exploration and study are warranted in this area. 

An Exact Solution for Essential Value 

Various research teams have been endeavoring to improve the precision and reliability of 

methods derived from the operant demand framework (see Gilroy et al., 2020; Kaplan et al., 
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2021, for relevant examples). In a relevant work that explored the concept of elasticity, Gilroy et 

al. (2019) evaluated historical accounts of elasticity in the operant demand literature and 

provided an exact solution for unit elasticity in the framework of Hursh and Silberberg (2008), 

see Equation 7. Additional information on this specific re-arrangement of terms is provided in 

the Appendix. 

𝑃ெ஺௑ =
ଵ

ఈொబ
∗ −𝑊 ൬

ିଵ

௟௡൫ଵ଴ೖ ൯
൰     ( 7 

Equation 7 represents how each of the various parameters included in the framework of Hursh 

and Silberberg (2008) relates to unit elasticity. This was an empirical and conceptual 

improvement over earlier practices, which relied on the generalized model of EV to provide an 

approximation of 𝑃ெ஺௑. As noted in Gilroy et al. (2020), this solution can be rearranged to reflect 

the exact relationship between 𝛼 and other parameters, including k, see Equation 8. 

𝛼 =
ିௐ൬

షభ

೗೙൫భబೖ൯
൰

௉ಾಲ೉ொబ
      ( 8 

As indicated in Equations 4 and 8, these expressions reflect the approximated (i.e., power 

function; Eq. 4) and exact relationships (i.e., omega function; Eq. 8) between 𝛼 and relevant 

metrics, respectively. Revisiting the observed relationship between 𝛼 and k illustrated in Figure 

1, the performance of the approximated (Equation 4) and exact (Equation 8) expressions are 

illustrated together in Figure 3. Referencing Figure 3, Equation 4 provides an approximation of 

the relationship, but Equation 8 is exact in predicting 𝛼 given parameter k when all other metrics 

are held constant. That is, Equation 8 is free from the differential degrees of error introduced by 

approximating the relationship between parameters k and 𝛼. As such, the solution provided in 

Gilroy et al. (2020) succeeds in fully explaining the relationship described in Hursh (2014). 

Following the original strategy of Hursh (2014), this solution can be rearranged to assume the 
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general form described by Hursh and colleagues, i.e. 𝛼 ≈ 𝐼𝑘௦. This rearrangement of terms is 

provided in Equation 9 and described in greater detail in the Appendix. 

𝛼 =
ଵ

௉ಾಲ೉ொబ
∗ −𝑊 ൬

ିଵ

௟௡൫ଵ଴ೖ൯
൰      ( 9 

In Equation 9, the first term on the right-hand side, 
ଵ

௉ಾಲ೉ொబ
, functions similarly to the prior 

intercept (i.e., I or v), and the second term, −𝑊 ൬
ିଵ

௟௡൫ଵ଴ೖ൯
൰, functions as the means of representing 

the relationship between parameters k and 𝛼. To support this claim regarding the two means of 

relating k and 𝛼, Figure 4 provides a visual comparison of both methods for scaling 𝛼, given 

varying k values. Referencing the lefthand plot, the power function most closely resembles the 

true scaling within the interval of 3 to 5 but the performance of the approximation degrades as k 

values extend outward from this range. 

Unit Elasticity, 𝑃ெ஺௑, and Essential Value 

Historically, references and descriptions regarding elasticity and unit elasticity in operant 

demand have been a source of some confusion (see Gilroy, Kaplan, et al., 2019, for a 

discussion). Prior to an exact solution, approximations of unit elasticity (𝑃ெ஺௑) were based on 

the generalized model of EV. As accurately described in Hursh and Roma (2016), a linear 

relationship was observed between EV and unit elasticity derived directly from the slope of the 

demand curve. Using this linear relationship, and fitting an added constant to minimize the error 

between the two (i.e., 𝑐), Hursh and Roma (2016) introduced a method for approximating 𝑃ெ஺௑ 

that was based upon the non-normalized expression of EV. This approximation is expressed in 

Equation 10 and reviewed in greater detail in the Appendix. 

𝑃ெ஺௑ ≈  𝑐
ଵ

ఈ௞భ.ఱொబ
      ( 10 
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Like the relationship between 𝛼 and k in the generalized model of EV, the lack of known 

relationships between model metrics and parameters obscured the relationships between EV and 

𝑃ெ஺௑. To further illustrate this point, the reader is directed to the righthand plot of Figure 4. In 

this plot, the correspondence between the revised power function (i.e., including the added 

constant) and the true relationship between 𝛼 and k has significantly improved. Reflecting upon 

this observation, improving the precision of the generalized model of EV results in EV becoming 

𝑃ெ஺௑. 

 To further establish the link between the generalized model of EV and 𝑃ெ஺௑, the terms 

for Equation 10 are rearranged to assume the form of the analytic solution for 𝑃ெ஺௑ (Equation 7). 

This rearrangement is displayed in Equation 11 and reviewed in greater detail in the Appendix. 

𝑃ெ஺௑ ≈  
ଵ

ఈொబ
∗

௖

௞భ.ఱ
       ( 11 

Presented in this restated form, the relationship between EV and 𝑃ெ஺௑ illustrated in Equation 11 

resembles the exact solution for 𝑃ெ஺௑ in Equation 7. Indeed, early distinctions between the 

generalized model of EV and 𝑃ெ஺௑ were likely an artifact due to approximation error, and such 

distinctions no longer held after Hursh and Roma (2016) improved the accuracy of the estimated 

power function. Given these observations, it is made clear that what was originally identified in 

the generalized model of EV was 𝑃ெ஺௑. 

Analytic Approaches to Essential Value 

Returning to the approach expressed in Hursh (2014) and Hursh and Roma (2016), the 

original goal of EV was to generate a measure of essential value robust to both varying span 

constants and differences in reinforcer units. This can be accomplished by leveraging the analytic 

representation of 𝑃ெ஺௑ provided in Equation 7. The solution for this novel representation is 

presented in Equation 12 and worked in greater detail in the Appendix. 
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𝑄଴𝑃ெ஺௑ =
ଵ

ఈ
∗ −𝑊 ൬

ିଵ

௟௡൫ଵ଴ೖ൯
൰      ( 12 

Equation 12, hereafter referred to as the analytical measure of EV (or 𝑃ெ஺௑ standardized to 𝑄଴), 

provides an index of essential value that indexes 𝛼 in a way that respects accounts for varying 

units of k and 𝑄଴. This representation of essential value is calculated by simply multiplying 

demand intensity by the price at which peak work takes place (i.e., 𝑃ெ஺௑𝑄଴). 

 The analytic approach presented here warrants discussion regarding the original goals of 

the Hursh and Silberberg (2008) framework, unit elasticity, and how reinforcer units are 

accounted for in the analysis. Regarding the goals of the framework, the model was originally 

designed to evaluate demand intensity (i.e., 𝑄଴) and essential value as independent dimensions of 

demand (i.e., 𝛼, given units for 𝑄଴ and k). The scaling of P occurs in units of 𝑄଴, so naturally, 

both 𝛼 and 𝑃ெ஺௑ are silent on differences in 𝑄଴ (see Hursh & Winger, 1995, for an early 

discussion of this issue). Second, regarding rates of change in elasticity, parameter 𝛼 is a unitless 

constant related to 𝑃ெ஺௑, given demand intensity (𝑄଴) and span constant (k). Parameter 𝛼 reflects 

a price associated with point of peak work in the Exponential model of operant demand, and 

when viewed in concert with other relevant parameters, can be equated to 𝑃ெ஺௑. As such, what is 

generally referenced as essential value (𝛼) is an indirect reference to 𝑃ெ஺௑; namely, a dosage-

dependent interpretation of essential value. 

As a point of distinction, it is necessary to discuss essential value when units of 

reinforcement (i.e., dosages) vary. Generally, studies applying the operant demand framework 

emphasize statistical comparisons of model parameters (i.e., 𝛼, 𝑄଴) and the specification of the 

model holds such that the information contained in each parameter reflects a distinct dimension 

of reinforcer effects. That is, 𝑄଴ is a quantity free of the scaling effects of price whereas 𝛼 is a 

quantity that reflects the scaling of P, given units of 𝑄଴ and k. In studies where reinforcer units 
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are constant (i.e., same dosage, potency), statistical comparisons of essential value (𝛼) are 

otherwise unremarkable. Said more simply, 𝛼s are easily compared because they share common 

units for k and price scaling is linked to respective 𝑄଴ values. In such cases, essential value is 

dependent on common units and scaling. However, the operant demand framework is also used 

in studies where reinforcer units are not constant (i.e., varying dosages) and this warrants 

additional consideration regarding essential value. Specifically, essential value in these cases 

may be viewed as either being dependent on common units (i.e., common scaling for P, but 

common reinforcer units) or independent of reinforcer units (i.e., common scaling for P, but 

different reinforcer units).  

As an illustrative example, let us consider the demand for Alfentanil across dosages of 

0.0003, 0.001, and 0.003 mg/kg per infusion reported by Ko et al. (2002). In a dosage-dependent 

view of essential value (𝛼), fits using the Exponential model of operant demand supported a 

shared 𝛼 and k value of 0.00001042 and 2.089, respectively, but dosage-specific 𝑄଴ values of 

348.2, 142.9, and 77.99 for dosages of 0.0003, 0.001, and 0.003 mg/kg/inj, respectively. The 

essential (𝛼) value of the reinforcer, across dosages, is constant across levels of dose, and 

differences associated with varying reinforcer units are accounted for with varying levels of 

fitted demand intensity. The common 𝛼 parameter behaves comparably because the scaling of P 

is linked to units of 𝑄଴ (i.e., varying across doses) and the common k parameter. However, it 

warrants noting that extracting a general index of essential value in this case warrants 

consideration of the varying reinforcer units, as price is differentially scaled due to the varying 

𝑄଴ value. Further exploring this example, solving for the analytical 𝑃ெ஺௑ yields contrasting 

values of 336.19, 183.48, and 75.30 for each of the dosage levels. This unexpected difference, 

given the identical 𝛼 and k values, is because extracting essential value for a reinforcer across 
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varying units must necessarily account for the varying units. As such, a dosage-independent view 

of essential value is warranted here. Applying the analytical model of EV, multiplying respective 

𝑃ெ஺௑ and 𝑄଴ values, the unit differences cancel and the three dosages then have the same value: 

26,220.00. 

Summary and Discussion 

This technical review provided an in-depth exploration of essential value, discussed the 

original definition and aims of the concept, illustrated how the term has been linked to 

parameters of the Exponential model of operant demand, and how the generalized measure of 

EV and a novel, analytical measure of EV are linked to various indices derived from the broader 

Hursh and Silberberg (2008) framework. The solutions provided in this work build upon earlier 

explorations in Gilroy et al. (2019) and Gilroy et al. (2020), respectively, wherein the strengths 

and challenges of the Hursh and Silberberg (2008) framework are exposed to improve greater 

clarity, build consensus regarding their interpretation, and support new development and 

innovation. 

 The results of this re-analysis of prior work in operant demand revealed that the 

generalized model of EV explored and described in Hursh (2014) and Hursh and Roma (2016) 

relates most closely to 𝑃ெ஺௑, a dosage-dependent index of essential value. Intuitively, 𝑃ெ஺௑ is a 

simple and straightforward representation of the price associated with the point of peak work and 

should be comparable across a range of appropriately specified k values. However, as noted in 

the previous example with varying dosages, 𝑃ெ஺௑ as a singular metric of essential value is 

limiting in some ways. Fortunately, in the case of dosage-level research, differences known to be 

linked to reinforcer units may be viewed through a dosage-independent view of essential value.  
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Essential Value in Operant Demand Research 

This review explored the interconnected relationships between various model parameters 

and the various ways in which essential value is scaled. As noted when exploring contemporary 

references and interpretations regarding elasticity (see Gilroy et al., 2020), descriptions and 

interpretations of essential value have also varied substantially in the literature. For example, the 

term essential value has been used in the context of reporting or analyzing specific model 

parameters (i.e., 𝛼) and more generally as a means of comparing reinforcers and units of 

reinforcement (i.e., generalized model of EV). 

Regarding the former, it warrants re-stating that 𝛼 is a unitless parameter, and thus, is 

dependent upon both demand intensity (𝑄଴) and the span of the demand curve (k) to establish 

scaling. As such, parameter 𝛼 alone does not reflect essential value and instead relates most 

directly to a rate of change in elasticity in concert with other parameters. This unitless nature is 

appreciated in statistical analysis because units inherited from other parameters facilitate 

individual comparisons. However, this unitless nature is problematic in research synthesis, and 

comparing 𝛼 values without appreciating unit differences across is unlikely to yield meaningful 

differences. Specifically, the use of the inverse of parameter 𝛼 (i.e., 
ଵ

ఈ
) has occasionally been 

referenced as if were a standalone index of essential value in meta-analytic syntheses of demand 

research. Generally, such comparisons are meaningless in meta-analytic work because one 

cannot reliably discern whether differences are due to varying units or some other moderator of 

interest included in the analysis. 

Regarding the use of essential value as a means of drawing comparisons within and 

between reinforcers, few have discussed how reinforcer units (i.e., dosage) directly impact the 
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quantification of essential value. Generally speaking, most research using the operant demand 

framework explores essential value in a dosage-dependent manner. Given that many studies do 

not have varying reinforcer units (e.g., units of cigarettes smoked), fit models that scale with 

baseline demand, and include a common k parameter, no differences in scaling need to be 

addressed for 𝑄଴ and 𝛼. However, studies evaluating different reinforcers or dosage levels must 

communicate whether scaling differences are present and whether these have been addressed. 

For such research, demand metrics likely need to be made dosage-independent to account for 

how baseline demand influences price scale across reinforcers.  

Essential Value and Models of Reinforcer Pathology 

 The primary focus of this work was to expose and clarify the mathematical underpinnings 

of the concept of essential value in the framework of Hursh and Silberberg (2008). 

Serendipitously, the analytical model of EV presented in this work highlights two dimensions of 

reinforcer effects that largely correspond with the prevailing two-factor model of reinforcer 

pathology (e.g., Bidwell et al., 2012; MacKillop et al., 2009). Briefly, latent modeling applied to 

the various indices of operant demand often supports a two-factor solution. The first, Amplitude, 

generally accounts for the intensity of demand for a reinforcer and overall reinforcer potency. 

That is, the baseline level of consumption for reinforcers (e.g., alcohol, nicotine) is often useful 

for distinguishing between clinical groups in the applied literature (e.g., high vs. low volumetric 

consumption). This dimension maps most closely with 𝑄଴, which represents levels of 

consumption free from the scaling of price. Second, Persistence reflects the degree to which the 

consumption of a reinforcer is resistant to increasing barriers or price. This dimension maps most 

directly onto dosage-dependent forms of essential value, which are interpreted in units of 

baseline demand and thus independent of baseline consumption (i.e., Amplitude). The 
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Persistence factor has also been linked to various other clinically meaningful outcomes, e.g. 

intentions related to smoking cessation (e.g., Bidwell et al., 2012). 

 The analytic model of EV presented in this work shows good correspondence with the 

dimensions of reinforcer effects that are typically found in latent modeling studies. Furthermore, 

the specific relationships highlighted in this work correspond with other related types of 

variances (i.e., loadings) observed within factors in these models. Furthermore, the introduction 

of the dose-independent view of essential value (i.e., 𝑃ெ஺௑𝑄଴) contributes a new means to 

characterize reinforcer effects in a more integrative fashion. That is, the two dimensions of 

consumption may be viewed and interpreted together or separately. Moving forward, such an 

approach may assist in better characterizing consumers demonstrating either elevated Amplitude 

but low Persistence, low Amplitude but high Persistence, or elevated levels across both factors. 

Summary 

In closing, the operant demand framework continues to grow both in the sophistication of 

statistical methods (Kaplan et al., 2021) as well as in the range and versatility of candidate 

models (Gilroy et al., 2018; Gilroy, Kaplan, et al., 2021; Kaplan et al., 2019; Koffarnus et al., 

2015). Furthermore, much of the work in this area is conducted and evaluated in a transparent 

manner consistent with open-source practices and open-science initiatives (Gilroy & Kaplan, 

2019). However, despite positive growth and increasing adoption, there continues to be a need to 

improve methodological consensus and precision regarding various aspects of the framework. 

For example, there continues to be significant variability regarding the references to established 

statistical and economic concepts (e.g., references to elasticity, calculations of elasticity). 

Similarly, various properties of the Hursh and Silberberg (2008) framework are still not well-

understood. For example, practices related to modeling non-consumption, the differential 
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methods of reflecting error variance, and the role of zero and non-zero limits remain a source of 

debate to date. On-going work in this area should continue to explore these properties and work 

to generate consensus and agreement regarding related practices.  
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Appendix: 

Worked Solution for the Generalized Model of EV: Hursh (2014) 
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Worked Solution for Alternative to Power Function 
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Hursh and Roma (2016) Approximation of 𝑷𝑴𝑨𝑿 

𝑐 =  0.084𝑘 +  0.65 
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Alternative Form of the Hursh and Roma (2016) Approximation of 𝑷𝑴𝑨𝑿 
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Worked Solution for Analytic Model of Essential Value 
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Figure 1. Drug-level Estimates for Power Function 

 

This figure illustrates fits using the power function to describe the relationship between 

parameters α and k for several drug reinforcers. 
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Figure 2. Normalized Essential Value Estimates  

 

This figure depicts the ordinal ranking of normalized EV measures. 
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Figure 3. Approximated vs. Exact Solutions 

 

These plots display how much better the analytic solution performs when compared to the 

approximated alternative. 
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Figure 4. Comparisons of Power Function to Omega Function for Parameter k 

 

These paths illustrate how both functions vary in terms of how the k value is scaled. 


