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Abstract15

Operant translations of behavioral economic concepts and principles have enhanced the16

ability of researchers to characterize the effects of reinforcers on behavior. Operant17

behavioral economic models of choice (i.e., Operant Demand) have been particularly useful18

in evaluating how the consumption of reinforcers is affected by various ecological factors19

(e.g., price, limited resources). Prevailing perspectives in the Operant Demand Framework20

are derived from the framework presented in Hursh and Silberberg (2008). Few dispute the21

utility of this framework and model, though debate continues regarding how to address the22

challenges associated with logarithmic scaling. At present, there are competing views23

regarding the handling of non-consumption (i.e., 0 consumption values) and under which24

situations that alternative restatements of this framework are recommended. The purpose of25

this report was to review the shared mathematical bases for the Hursh and Silberberg (2008)26

and Koffarnus et al. (2015) models and how each can accommodate non-consumption values.27

Simulations derived from those featured in Koffarnus et al. (2015) were used to conduct tests28

of equivalence between modeling strategies while controlling for interpretations of residual29

error as well as the absolute lower asymptote. Simulations and proofs were provided to30

illustrate how neither the Hursh and Silberberg (2008) nor Koffarnus et al. (2015) models31

can characterize demand at 0 and how both ultimately arrive at the same upper and lower32

asymptotes. These findings are discussed and recommendations are provided to build33

consensus related to zero consumption values in the Operant Demand Framework.34

Keywords: behavioral economics, operant demand, consumption, zero asymptotes35

Word count: 528436
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Hidden Equivalence in the Operant Demand Framework: A Review and37

Evaluation of Multiple Methods for Evaluating Non-Consumption38

Introduction39

Contemporary methods for evaluating the consumption of goods and services using40

the Operant Demand Framework are heavily influenced by the methodology proposed by41

Hursh and Silberberg (2008). This framework and methodology have evolved through several42

forms (e.g., Hursh et al., 1987) and the latest iteration takes a non-linear (i.e., “S”-type)43

shape and is driven by an exponential decay process (Hursh & Silberberg, 2008). This44

framework for evaluating the effects of unit price on the consumption of reinforcers has45

achieved widespread adoption and has also inspired derivatives that model consumption46

using varying scales, e.g., linear (Koffarnus et al., 2015), “log-like” (Gilroy, Kaplan, et al.,47

2021). Furthermore, this framework and manner of analysis has supported both basic and48

applied research, across a variety of real and hypothetical goods, within and across species49

[e.g., human and non-human animals; Hursh and Roma (2016)]. Although this framework50

has been effective in evaluating behavior across a range of applications, various modeling51

strategies are available and there is little consensus at present regarding which strategies are52

most appropriate for certain compositions of data.53

The original implementation of the Hursh and Silberberg (2008) framework was54

modeled from the notion that the prototypical shape of the demand curve was an “S”-type55

form bounded by upper and lower limits. The original intent of Hursh and Silberberg (2008)56

was to have an upper asymptote defined at a price of zero (i.e., limP→−∞) and a lower57

asymptote reached as prices approached infinity [i.e., limP→−∞; Gilroy, Kaplan, et al.58

(2021)]. The upper asymptote is interpreted as the intensity of demand for a particular59

reinforcer (i.e., consumption [Q] at a price of 0 = Q0), and the rate by which demand60

progresses from the upper to lower asymptote refers to the overall sensitivity to price (i.e.,61
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rate of change in elasticity = α).1 This approach to characterizing the effects of reinforcers62

has been effective for understanding patterns of choices related to abuse liability for drugs as63

reinforcers (MacKillop et al., 2018) as well as substance use and abuse (Acuff et al., 2020;64

Aston et al., 2016; González-Roz et al., 2019). Furthermore, this approach also provides a65

means of evaluating reinforcer efficacy in behavioral interventions (Gilroy, Waits, et al., 2021;66

Gilroy et al., 2018) as well as various other initiatives, e.g. environmental conservation67

(Kaplan, Gelino, et al., 2018), consumption of evidence-based therapies (Gilroy et al., n.d.),68

and COVID-19 vaccination (Hursh et al., 2020).69

Models derived from this framework, such as Hursh and Silberberg (2008) and70

Koffarnus et al. (2015), characterize the demand for reinforcers with non-zero upper and71

lower asymptotes. Both models are bounded at an upper limit (i.e., Q0) and progress72

towards a non-zero lower limit in an “S”-type form. Non-zero upper and lower asymptotes in73

these models make good sense because the original values of interest in the framework of74

Hursh and Silberberg (2008) were positive real values (i.e., not including 0). The exclusion of75

such quantities is expected because the logarithmic representation of consumption is76

undefined at 0.77

In response to the statistical and philosophical issues related to the omission of 078

consumption values, Koffarnus et al. (2015) introduced a restatement of the Hursh and79

Silberberg (2008) model that accommodated these values during non-linear regression. This80

procedure was made possible by exponentiatingterms such that the LHS (left-hand side) of81

the original Hursh and Silberberg (2008) model reflected changes in consumption using the82

linear scale. In this restatement, the LHS of the model (i.e., observed consumption) need not83

be submitted to the log transformation that prevented the use of the original Hursh and84

Silberberg (2008) model with non-consumption values.85

1 Beyond the fitted estimates resulting from the framework of Hursh and Silberberg (2008), indicators of

price elasticity of demand (e.g., PMAX, OMAX) are of primary interest in the Operant Demand Framework.
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The approach presented in Koffarnus et al. (2015) drew considerable attention, as one86

of the largest issues associated with the log scale could be avoided during nonlinear regression.87

However, it warrants noting that most of the RHS (right-hand side) of the Koffarnus et al.88

(2015) restatement remained on the log scale. Specifically, the span of the demand curve as89

well as the rate of exponential decay remained in the log scale (Gilroy, Kaplan, et al., 2021).90

It is for this reason that the span of the demand curve in this restated model cannot91

characterize 0, despite including such quantities in non-linear regression. Additionally, it is92

also relevant to note that the regressive process for logarithmic and linear implementations93

of the model differs with respect to how residual error is interpreted and this introduces94

behavior that varies between implementations (see Gilroy, Kaplan, et al., 2021).95

Same Model But Different Error96

The challenges associated with fitting models of operant demand (i.e., minimizing97

residual error) are increasingly reviewed by researchers applying the Operant Demand98

Framework (Gilroy, Kaplan, et al., 2021; Gilroy et al., 2020). Gilroy, Kaplan, et al. (2021)99

noted, among other things, that residual error is reflected differently in log and linear scales100

and that such differences affect model optimization, the resulting parameters, and even the101

interpretations of such parameters. For example, changes in log scale represent relative102

differences while changes in linear scale represent absolute differences. In most economic103

applications, relative error is preferred because the usual quantities of interest and their104

associated projections (i.e., ŷ) often span across multiple orders of magnitude (e.g., ŷ = 1000,105

ŷ = 10, ŷ = 0.1). In these situations, the quantities observed at higher orders would be106

weighted more heavily in absolute least squares regression (linear scale) than those at lower107

orders unless some form of correction was applied (i.e., weighting). It is for this reason that108

relative difference is often the default in these applications.109

Whereas relative differences reference another quantity (e.g., predicted values,110

weights), absolute differences are straightforward. That is, absolute error is simply the111
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difference from some observed quantity and ŷ regardless of the order of magnitude. Although112

more straightforward, the use of the linear scale in the Operant Demand Framework113

introduces some variability in how parameters are optimized in these models. For example,114

Gilroy, Kaplan, et al. (2021) noted how a departure from relative difference has led to115

occasional inconsistencies wherein estimates across implementations of the Hursh and116

Silberberg (2008) framework have led to different conclusions (e.g., shared vs. respective α117

values across varying dose-response curves). In addition to fitted estimates, reflecting118

residual error in terms of relative differences tends to yield more normalized patterns of error119

variance. As such, differences in how residual error is handled represent one dimension along120

which the two implementations of the Hursh and Silberberg (2008) framework differ.121

Different Error but Same Asymptotes122

There has been renewed attention regarding the asymptotes of models based upon123

the framework of Hursh and Silberberg (2008). As currently designed, neither the Hursh and124

Silberberg (2008) nor the Koffarnus et al. (2015) model can characterize demand at 0 and125

this is because both reflect the span of the demand curve in log units (Gilroy, Kaplan, et al.,126

2021). To address this fundamental issue, Gilroy, Kaplan, et al. (2021) presented a “log-like”127

alternative to the log scale that preserves many of the desirable qualities of the log scale128

while accommodating 0 consumption values in the Operant Demand Framework. For129

example, this alternative (i.e., Inverse Hyperbolic Sine transformation) replicates the130

behavior of logarithms across a range of values (e.g., 10, 100), normalizes residual error131

variance, and supports a true lower bound at 0. This approach is not discussed at length in132

this report, though interested readers are encouraged to consult Gilroy, Kaplan, et al. (2021)133

for a discussion and demonstration of this “log-like” scale and its benefits (e.g., de-coupling134

of α from the span of the curve, separate span parameter not necessary).135

Revisiting the topic of asymptotes, two novel terms are introduced in this work:136

AUpper and ALower. The term AUpper is used to refer to the absolute upper bound of the137
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demand curve. In models derived from the Hursh and Silberberg (2008) framework, this is138

simply the fitted parameter Q0. This is because parameter Q0 is the absolute upper limit to139

the demand curve when prices equals 0, i.e. f(0) = AUpper. In contrast, the term ALower140

refers the absolute lower bound of the demand curve and this is not reflected by any single141

parameter. Mathematically, this absolute lower limit refers to the level of demand as price142

approaches ∞, i.e. lim
P→∞

f(x) = ALower. These two upper and lower extremes are separated by143

the span constant k, which specifies the distance in log units between these asymptotes144

(Gilroy, Kaplan, et al., 2021). The notation of both AUpper and ALower are noted below and145

are proofed in greater detail across models in the Appendix of this work.146

AUpper = 10log10Q0

ALower = 10log10Q0−k
(1)

Further inspection of ALower and its derivation evokes questions regarding how any147

model based on the Hursh and Silberberg (2008) framework could characterize148

non-consumption values. As noted in the bottom portion of Equation 1, neither the Hursh149

and Silberberg (2008) and Koffarnus et al. (2015) models could represent a value of 0150

because this value does not fall within the interval between these upper and lower extremes.151

This introduces a complex situation wherein 0 consumption values could be included in152

non-linear regression, but the predicted levels of demand could never characterize this value.153

As such, the issue with non-zero lower asymptotes is one dimension along which derivatives154

of the Hursh and Silberberg (2008) framework are the same.155

Same Asymptotes and Same Spans156

Understanding non-consumption in the Hursh and Silberberg (2008) framework157

requires an appreciation of how the span parameter k influences the range of values that may158

be predicted (i.e., ŷ). In the original implementation of the Hursh and Silberberg (2008)159
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framework, k represented the range of observed, non-zero consumption values. That is, k was160

derived in log units from the upper and lower extremes of all positive, real numbers. Since 0161

consumption values were not included in the original implementation, parameter k was162

directly linked to the upper and lower limits of the observed data. Indeed, the specification163

of this constant was straightforward and parameter k, AUpper, and ALower were all directly164

linked to positive real numbers. A visualization of parameter k is provided in Figure 1 with165

respect to positive real consumption values.166
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Figure 1

Span of Demand Curve with Non-zero Consumption

Whereas the determination of parameter k in the Hursh and Silberberg (2008)167

implementation is linked to positive real numbers, the interpretation of parameter k became168

more complicated in the implementation introduced by Koffarnus et al. (2015). This added169

complexity emerged because parameter k was still based on positive real numbers but had to170
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be inflated to project ALower beyond the range of positive real values to a quantity nearer to171

0. This represented novel behavior for parameter k and various teams have constructed172

strategies to assist in driving ALower beyond the range of non-zero consumption. For example,173

some have added a constant to parameter k (derived from positive real values) or allowed174

this parameter to vary as a fitted parameter (Kaplan, Foster, et al., 2018). Regardless of the175

method, the rationale was to inflate the span of the demand curve to and drive ALower to a176

lower point. A visualization of this span-inflating behavior is illustrated in Figure 2.177

K (Empirical):  ALower = 5.442

K + 0.5:  ALower = 1.7209
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Span of Empirical Demand Curve with Vary Spans

Figure 2 illustrates how inflating the span affects ALower and this has three178

appreciable effects on the demand curve. First, the rate of change in elasticity is jointly179

reflected by parameter α and the span of the demand curve (Gilroy et al., 2020). Given that180

α is a unit-less quantity, it co-varies inversely with the size of the span constant. For example,181

relatively greater α values reflect rapid changes in ŷ across prices and relatively lesser values182

reflecting gradual changes in ŷ across prices. Second, k values (i.e., k < e
log(10)) influence both183

the span of the demand curve as well as the range of elasticity and inelasticity observed in184
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models derived from the Hursh and Silberberg (2008) framework (Gilroy et al., 2019;185

Newman & Ferrario, 2020). That is, k values below 1 log unit restrict the range of elasticity186

values and render analytic solutions for unit elasticity impossible. Third, and most relevant187

to the Koffarnus et al. (2015) model, inflated k values serve to lessen the absolute difference188

between ALower and 0. That is, the distance between ALower and 0 is is lessened, but no k189

value will drive the span to 0. Figure 2 provides an elegant display of how this gap decreases190

proportionally with each unit increase in the span parameter k but will never reach 0.191

Hidden Model Equivalence192

The sections above outline the few ways in which two of the most popular derivatives193

of the Hursh and Silberberg (2008) framework differ. These two modeling strategies differ in194

terms of optimization (i.e., minimization of residual error) but share the limitations related195

to asymptotes. Regarding the first point, residual error and optimization, the two models196

can provide equivalent results when the handling of residual error is made comparable. That197

is, re-weighting the errors (i.e., relative to ŷ) in the Koffarnus et al. (2015) model can yield198

fits and estimates approximate to those resulting from the Hursh and Silberberg (2008)199

model in the absence of non-consumption. Alternatively, the Hursh and Silberberg (2008)200

model can be adjusted to yield estimates comparable to those from the Koffarnus et al.201

(2015) model by adjusting residual error to be interpreted in terms of absolute difference,202

i.e. Ei = 10ŷ − 10y. A visualization of inter-related model fits are illustrated in Figure 3.203

Regarding the second point, ALower is seldom discussed in Operant Demand and this204

has considerable influence on models derived from the Hursh and Silberberg (2008)205

framework. This is an inherently complex topic, especially so in the Koffarnus et al. (2015)206

restatement, because consumption values observed at 0 are a quantity that cannot be207

predicted by models that reflect the range of consumption in log units. In attempts to208

accommodate non-consumption, modeling based on the Hursh and Silberberg (2008)209

framework must minimize two sources of error instead of one. That is, the non-linear210
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Comparable Model Fits with Comparable Error

regression must minimize residual error as well as the distance between ALower and 0 (i.e., k)211

in an attempt to produce an ALower that approximates 0. For instance, an application of the212

Koffarnus et al. (2015) model where k is included as a fitted parameter simultaneously213

optimizes demand intensity, rates of change in elasticity, and a span constant (i.e., ALower).214

As noted above, ALower is driven lower by inflating the span constant towards some non-zero215

quantity that is reasonably close to 0. Pragmatically, proponents of the Koffarnus et al.216

(2015) approach would likely argue that such a small amount of error calls for little concern217

and that ALower could be considered close enough of an approximation of 0 to enable218

analyses using the complete data set (non-consumption values included).219

Revisiting the argument for a close enough approximation of non-consumption, let us220

consider the following hypothetical. Let us say that the interpretation of a fitted Koffarnus221

et al. (2015) model optimizes such that values at ALower are a close enough approximation of222

0 to proceed with demand curve analyses using a complete data set. Following this logic (i.e.,223

ALower ∼= 0), it stands to reason that treating sufficiently low ALower values and 0224

consumption values as the same should replicate the behavior of the Koffarnus et al. (2015)225

model in the Hursh and Silberberg (2008) model. Assuming an inflated k parameter,226

equivalent estimates should result because ŷ can be predicted beyond the range of observed227

non-zero levels and the resulting ALower should be close enough to 0 on the linear scale that228
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differences between ALower and 0 would be considered negligible. Controlling for differences229

in terms of error representation, it stands to reason that the Hursh and Silberberg (2008)230

model would provide equivalent estimates had non-consumption been replaced by respective231

ALower values and error minimization been reflected in terms of absolute differences.232

In a demonstration of this modified Hursh and Silberberg (2008) approach, the full233

data set from Figure 1 was fitted with an inflated k parameter and non-consumption values234

replaced with respective ALower values. Specifically, the most inflated span and corresponding235

ALower from Figure 2 were used in this example demonstration, i.e. ALower = 10log10Q0−(k+3).236

The results of this modified Hursh and Silberberg (2008) approach are illustrated along with237

the Koffarnus et al. (2015) approach are illustrated in Figure 4.238
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Comparable Model Fits with Comparable Asymptotes

Controlling for differences in error handling (absolute difference) and ALower values239

(non-consumption replaced by lower asymptotes in the Hursh and Silberberg (2008) model),240

the model fits are functionally equivalent, see Table 1. This short example highlights several241

details that often go unnoticed when using the Koffarnus et al. (2015) model. First, this242

model does not characterize demand at 0. Rather, an inflated k parameter to drives ALower243

to a quantity close enough to 0 that the absolute difference between 0 and ŷ is negligible.244

This is the best that this approach can achieve because 0 does not fall within the interval245

between AUpper and ALower. Second, this approach is functionally equivalent to the Hursh246
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Table 1

Comparison of Exponentiated and Absolute-Weighted Exponential

Models

P Q Exponentiated Q.Mod Exponential.Absolute

0.100 99.541 98.686 99.541 98.817

1.000 95.521 95.068 95.521 95.150

2.000 91.285 91.219 91.285 91.251

5.000 79.884 80.666 79.884 80.572

10.000 64.517 65.947 64.517 65.710

50.000 16.333 15.211 16.333 14.915

100.000 5.442 3.339 5.442 3.232

500.000 0.000 0.018 0.005 0.017

1,000.000 0.000 0.006 0.005 0.006

5,000.000 0.000 0.005 0.005 0.005

and Silberberg (2008) model when non-consumption values are replaced with by the247

respective ALower values and when residual errors are de-weighted (i.e., absolute). As such,248

both functional almost identically and differ in largely trivial aspects.249

Research Questions250

The Operant Demand Framework has achieved high regard as a robust approach for251

evaluating choices and behavior of societal significance (Hursh & Roma, 2013; Reed et al.,252

2013). Various labs and teams have been working towards expanding the scale and scope of253

this approach, moving from questions specific to individuals and groups to society-at-large254

(Hursh & Roma, 2013; Roma et al., 2017). This approach and its methods are increasingly255

represented in a range of scientific tools and packages as well (Gilroy et al., 2018; Kaplan et256

al., 2019). Despite increasing popularity and accessibility, few resources provide the257
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mathematical details necessary to support researchers in navigating between the available258

options for performing demand curve analyses.259

The purpose of this technical report was to review the mathematical underpinnings of260

two prevailing models derived from the framework of Hursh and Silberberg (2008) and261

present an argument as to why distinctions between such models create more confusion than262

consensus.263

Specifically, the shared mathematical bases between the two should allow for264

modifications wherein both provide statistically equivalent estimates—even when265

non-consumption values are present. The primary questions for the simulation study was266

whether estimates resulting from the Hursh and Silberberg (2008) and Koffarnus et al.267

(2015) models would be statistically equivalent when controlling for differences in handling268

residual error (i.e., absolute, relative) and treating non-consumption values as respective269

ALower values.270

Methods271

Data Generating Process272

A total of 20000 hypothetical data series were simulated using using the R Statistical273

Program (R Core Team, 2021). The specific syntax used to generate was featured in an R274

package that was submitted to peer-review (Kaplan et al., 2019). Specifically, the275

SimulateDemand method included in the beezdemand R package (Kaplan et al., 2019) was276

used to simulate hypothetical purchase task data that included a large composition of277

non-consumption values. The seed values and variance used to generate these data were278

identical to those that were used in Koffarnus et al. (2015). This specific data generating279

process was used as the basis for comparisons with the Hursh and Silberberg (2008) model280

given that the authors of the Koffarnus et al. (2015) study modeled their approach around281

“messy” data frequently observed in “real-world” purchase tasks that are often conducted on282



DRAFT

EXPONENTIAL MODEL 15

“crowdsourced” platforms, e.g. Amazon’s Mechanic Turk (mTurk).283

Screening of Non-systematic Data Series284

The three criteria for systematic data outlined in Stein et al. (2015) were applied to285

all generated demand data. Specifically, individual series were screened for bounce, trend,286

and reversals from zero. The first criterion, bounce, refers to local changes within an287

expected downward trend as a function of increasing price. That is, it is unexpected to see288

consumption increases immediately following a price increase. The second criterion, trend,289

refers to the molar change in consumption from the lowest to the highest price. That is,290

there is a certain amount of decrease in consumption expected across the full domain of price291

increases. Lastly, reversals from zero refer to the return of consumption at a higher price292

following the cessation of consumption at a lower price. Such trends are inconsistent with293

expected patterns of consumption. Simulated data were carried forward into the final294

analysis if each series met all indicators of systematic hypothetical purchase task data.295

Modeling Strategies296

A total of 4 modeling approaches were evaluated (2 models, 2 error interpretations).297

Each approach was referenced as a specific strategy for conducting demand curve analysis298

when non-consumption values were observed in the data. This facilitated two pairwise299

comparisons when both models shared a comparable approach for handling residual error.300

These comparisons were used to determine whether the various strategies provided301

statistically equivalent estimates when asymptotes and error differences were comparable.302

Consistent with efforts to maintain open and transparent science (Gilroy & Kaplan, 2019),303

the source code necessary to reproduce these strategies and this report has been posted for304

public review in a GitHub repository managed by the corresponding author, see Author305

Note. Each of the strategies used in these comparisons are presented below in greater detail.306
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Strategy 1: Koffarnus et al. (2015) Model (Absolute Error)307

The Koffarnus et al. (2015) model (absolute error difference) was fitted to simulated308

consumption data at the individual-level. The model was fit using the optim package309

included in the R Statistical Program (R Core Team, 2021) due to its considerable flexibility310

in performing ordinary least squares regression. Initial starts were derived based on the311

respective data for parameter Q0 and both Q0 and α were estimated on the log scale to 1)312

support more comparable step sizes in the optimization and 2) facilitate pairwise313

comparisons across strategies. The span constant k was derived from the empirical range of314

the full data set with an added constant (i.e., k = k + 3) to allow the span of the demand315

curve to extend below the lowest non-zero point of consumption, as is common practice316

(Kaplan, Foster, et al., 2018). The same span constant was used across all models to enable317

consistent comparisons between Q0 and α. Non-consumption values remained at a value of 0318

in this approach.319

Strategy 2: Koffarnus et al. (2015) Model (Percentage Error)320

The Koffarnus et al. (2015) model (percentage error difference) was evaluated321

consistent with Strategy 1 with the exception of how differences in residual error were322

reflected. In this approach, the absolute residuals simulated relative error by referencing ŷ,323

i.e. ei = (ŷ − y) ∗ 1
ŷ

= ŷ−y
ŷ
. It warrants noting that this manner of weighting error is not324

identical to log difference. That is, the weighting of the absolute error difference against ŷ is325

equivalent to reflecting residual error as percentage difference and this corresponds with log326

difference only certain circumstances, i.e. lnY1
Y2
≈ Y2−Y1

Y1
. Briefly, percentage difference is327

nearly identical to log difference with very small differences (e.g., 1% change) but the two328

diverge once the degree of difference between values grows larger (e.g., 50% change). As such,329

the varying approaches to reflecting relative differences are expected to vary and this source330

of error between the approaches is described more thoroughly in the Appendix. Regardless,331

the two approaches are expected to behave comparably but are not expected to be332
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equivalent. All other parameters were estimated consistent with Strategy 1.333

Strategy 3: Hursh and Silberberg (2008) Model (Log Difference Error)334

The Hursh and Silberberg (2008) model (log error difference) was fitted to simulated335

consumption data at the individual-level. During the fitting, non-consumption values were336

replaced by an ALower value that was generated dynamically based on parameters Q0 and k337

during parameter estimation. That is, a customized loss function was prepared for use with338

the optim method. As noted in Strategy 2, both Strategy 2 and Strategy 3 reflected relative339

difference in different ways. All other parameters were estimated consistent with the other340

strategies.341

Strategy 4: Hursh and Silberberg (2008) Model (Absolute Error)342

The Hursh and Silberberg (2008) model (absolute error difference) was fitted to343

simulated consumption data at the individual-level as well. This strategy was identical to344

that of Strategy 3 with the exception of how residual error was interpreted during345

optimization. Consistent with Strategy 3, non-consumption values were replaced by an346

ALower value that was generated dynamically based on parameters Q0 and k during347

parameter estimation. A customized loss function was used to represent residual error in348

terms of absolute differences, i.e. ei = 10ŷ − 10y. All other parameters were estimated349

consistent with that of the other strategies.350

Analytical Strategy351

Pairwise comparisons were conducted for parameters Q0 and α resulting from each of352

the four strategies while controlling for differences in how residual error was interpreted353

during optimization. T-tests and tests of equivalence were used to compare estimates354

resulting from the Koffarnus et al. (2015) model and the Hursh and Silberberg (2008) model355

with and without modified error terms. T-tests were calculated using the base methods in R356

and the tost method in the equivalence R package was used to perform two one-sided t-tests357
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(TOSTs, Robinson & Robinson, 2016). Specifically, t-tests were used first in each comparison358

to test whether a significant difference was observed between estimates. Tests of equivalence359

were performed if a non-significant difference was observed. The emphasis here was not on360

determining a lack of difference between strategies but instead on determining whether these361

were practically equivalent. The Smallest Effect Size of Interest (SESOI) was set to 0.01 (i.e.,362

~1% difference in log scale) and differences below this threshold were not considered363

practically meaningful. Across all tests, corrections were applied due to presence of repeated364

comparisons, i.e. p = 0.05/2 = 0.025.365

Results366

The data generating process was used to produce a total of 20000 distinct367

consumption series that simulated hypothetical purchase task data. A range of series was368

simulated but was restricted to those that met all indices of systematic purchase task data,369

contained 50% or more non-zero consumption, and featured at least two unique positive real370

consumption values (i.e., non-step data). Within these series, the R2 metric was used as the371

basis for selecting the 1,000 series that best represented the optimal performance across all372

fitted models. The results of specific pairwise comparisons across these 1,000 cases are373

presented below.374

Strategy 1 vs. Strategy 4 (Absolute Error)375

The primary comparison of interest in this report was between Strategy 1 and376

Strategy 4 This comparison evaluated the correspondence between the Hursh and Silberberg377

(2008) and Koffarnus et al. (2015) models when error differences were represented in terms of378

absolute difference and when non-consumption was treated as ALower for the Hursh and379

Silberberg (2008) model. Given the shared mathematical basis for each, the estimates380

resulting from each were expected to be equivalent.381

An evaluation of the relationship between Strategy 1 and 4 revealed perfect382
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Figure 5

Comparisons of Strategy 1 and 4 (Absolute Error)

correlations for both Q0 (r=1.00, t=612,004,386.43, df=998, p<0.025) and for α (r=1.00,383

t=80,650,327.30, df=998, p<0.025). That is, a perfect rank ordering was observed across384

strategies and across parameters. T-test comparisons were non-significant for Q0 (t=0.00,385

df=1,998.00, p>0.975) and for α (t=0.00, df=1,998.00, p>0.975). Subsequent TOSTs were386

significant for Q0 (p<0.025) and for α (p<0.025). Specifically, results of equivalence testing387

rejected the null hypothesis of statistical difference for both parameters and this indicated388

that estimates resulting from each strategy were statistically equivalent. A visualization of389

these corresponding estimates is illustrated in Figure 5.390

Strategy 2 vs. Strategy 3 (Relative Error)391

The secondary comparison of interest in this report was between Strategy 2 and392

Strategy 3. Comparisons between Strategy 2 and Strategy 3 evaluated the correspondence393
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Figure 6

Comparisons of Strategy 2 and 3 (Relative Error)

between the Hursh and Silberberg (2008) and Koffarnus et al. (2015) models when error394

differences were interpreted in terms of relative difference and when non-consumption was395

treated as ALower for the Hursh and Silberberg (2008) model. Specifically, the Hursh and396

Silberberg (2008) model evaluated error using log difference and the Koffarnus et al. (2015)397

model evaluated error using percentage difference. Given the varying methods of398

representing residual error as relative, the estimates resulting from each were not expected to399

be equivalent.400

An evaluation of the relationship between Strategy 2 and Strategy 3 revealed strong,401

but not perfect correlations for Q0 (r=0.91, t=68.48, df=998, p<0.025) and for α (r=0.95,402

t=101.43, df=998, p<0.025). T-test comparisons were significant for Q0 (t=-27.42,403

df=1,995.83, p<0.025) as well as for α (t=-7.46, df=1,989.75, p<0.025). No TOSTs were404

performed given that t-tests indicated significant differences between estimates resulting405
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from each strategy. A visualization of these relationships are illustrated in Figure 6.406

Discussion407

This report provided an in-depth review of how non-consumption values (i.e., 0) have,408

thus far, been incorporated in models derived from the Hursh and Silberberg (2008)409

framework. As noted throughout this report, both the Hursh and Silberberg (2008) and the410

Koffarnus et al. (2015) approaches are unable to model demand at 0 and both are bounded411

by the non-zero lower asymptote, ALower. This is the case regardless of whether412

non-consumption values are included in the regression. As such, the approach put forward in413

Koffarnus et al. (2015) is not a complete solution for non-consumption values because the414

same limitations of the original approach remain in this regard. This is because the span of415

the demand curve in the Hursh and Silberberg (2008) framework remains in the log scale,416

despite LHS exponentiation, and the span in log scale cannot support 0. As an alternative to417

this issue with span, others have argued that a true solution to this issue would require418

deviating from the log scale altogether (Gilroy, Kaplan, et al., 2021).419

The proofs and simulations featured in this study facilitated comparisons between the420

Hursh and Silberberg (2008) and Koffarnus et al. (2015) models when controlling for the421

common ALower and differences in how residual errors are interpreted during optimization.422

The goal of these comparisons was to advance the argument that the Exponential (Hursh &423

Silberberg, 2008) and Exponentiated (Koffarnus et al., 2015) models should not be so424

strongly distinguished. Indeed, it is quite trivial to arrive at statistically equivalent estimates425

in both approaches when the role of the span constant and ALower and the method of426

representing residual error are held perfectly constant. The results of planned comparisons427

confirmed that the two models provide statistically equivalent estimates when controlling for428

such differences perfectly—even when non-consumption values are included. However, this is429

not the case when different methods of addressing residual error are used. That is, similar430

methods for representing relative differences are closely correlated but not statistically431
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equivalent. This difference is mostly due to how percentage and log difference diverge as432

differences grow larger (see Appendix).433

Given that neither approach can characterize demand at 0, ALower is the best434

approximation of 0 possible for models derived from the Hursh and Silberberg (2008)435

framework. Following this logic, replacing non-consumption values with respective436

ALower values often result in the Exponential model providing estimates that are at least437

highly correlated with (potentially statistically equivalent to) the Exponentiated model. In438

advancing this argument, it is necessary to state clearly that this claim is not presented with439

the intent of favoring any specific approach as a de facto standard or a recommended default440

when applying methods from the Operant Demand Framework. Rather, this work intended441

to reveal how these supposedly opposing strategies are functionally interchangeable under442

specific conditions. Indeed, they are so similar that distinguishing the two only serves to443

obscure the many shared mathematical bases of each. That said, each approach has common444

utility and future efforts should be directed towards improving the understanding of the445

properties of the Hursh and Silberberg (2008) framework overall rather than reinforcing any446

stance, position, or bias towards a specific implementation.447

The final aim of this work was to reiterate the ways in which the proponents of each448

approach have extended the Operant Demand Framework. That is, the proponents of each449

approach were successful in advancing both the utility and scope of the Operant Demand450

Framework. For example, the finding that the Hursh and Silberberg (2008) model can451

replicate the behavior of the Koffarnus et al. (2015) without exponentiation terms in no way452

detracts from the contributions of the Koffarnus et al. (2015) implementation of the453

framework. Indeed, the Koffarnus et al. (2015) team led the charge towards addressing the454

problematic issue of removing otherwise valid research data. For decades, substantial455

portions of otherwise valid consumption data were never carried forward into analyses and it456

is unclear how these prior analyses would compare had these data been included. Regardless457
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of whether analysts have an established preference for one approach or another, it is clear458

that the methods included in Operant Demand Framework are better equipped now that459

non-consumption values can now be considered in the analysis.460

Future Directions in Operant Demand461

This perspective and this framework currently reflect a range of consumption (and462

non-consumption) and efforts are underway to leverage multilevel modeling as a463

methodological extension (Kaplan et al., In Press). Indeed, various labs are working toward464

increasing the applicability and generality of this approach. Towards this end, the intent and465

mission of the original Koffarnus et al. (2015) study regarding non-consumption values is as466

valid and valuable today as it was when this work was first published. However, debates and467

conjecture regarding model superiority (or inferiority) in the absence of formal tests and468

mathematical proofing do not enhance the Operant Demand Framework in any appreciable469

manner. That said, the two approaches are functionally interchangeable (even in the presence470

of non-consumption) and the reader is cautioned against thinking that any single model is471

inherently “true,” “better,” or otherwise superior in the absence of careful and individualized472

statistical evaluation. That said, it is unclear whether the prevailing approach in the Operant473

Demand Framework will remain based on the framework presented in Hursh and Silberberg474

(2008) well into the future. Indeed, it is possible that future research could explore to475

deviations from the log scale (Gilroy, Kaplan, et al., 2021) or adopt a different framework476

altogether (Newman & Ferrario, 2020). Regardless of the where the future takes the Operant477

Demand Framework, future approaches and advances should be met with cautious optimism478

and consideration rather than disregard in favor for what is preferred or familiar.479
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Appendix566

Several proofs are provided here to illustrate how the upper and lower asymptotes are567

determined. Despite the shared mathematical basis, derivations of each are provided below.568

Modified Hursh & Silberburg (2008) Optimization (Relative Error)569

ei =


ŷi − log10yi if yi 6= 0

ŷi − log10ALower if yi = 0

Modified Hursh & Silberburg (2008) Optimization (Absolute Error)570

ei =


10ŷi − 10log10yi if yi 6= 0

10ŷi − 10log10ALower if yi = 0

Hursh & Silberburg (2008) Proofs571

AUpper at P = 0572

log10AUpper = log10Q0 + k(e−α∗Q0∗0 − 1)

= log10Q0 + k(e0 − 1)

= log10Q0 + k(1− 1)

= log10Q0 + k(0)

= log10Q0

AUpper = Q0

Note: Euler’s constant raised to the power of 0 is equal to a value of 1. This573

essentially zeroes out the k constant, leaving just the Q0 parameter at 0 P .574
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ALower at lim
P→∞

f(x)575

log10ALower = lim
P→∞

f(x) = log10Q0 + k(e−α∗Q0∗∞ − 1)

= log10Q0 + k(e−∞ − 1)

= log10Q0 + k(0− 1)

= log10Q0 + k(−1)

= log10Q0 − k

= log10AUpper − k

ALower = 10log10AUpper−k

Note: Euler’s constant raised to the power of −∞ equates to a value of 0. That is,576

e−∞ = 1
e∞

= 1
∞ ≈ 0. This is has effect of making the value in parentheses equal to −1, which577

in turn results in the full subtraction of quantity k from log10Q0.578

Koffarnus et al. (2015) Proofs579

AUpper at P = 0580

AUpper = Q0 ∗ 10k(e−α∗Q0∗0−1)

= Q0 ∗ 10k(e0−1)

= Q0 ∗ 10k(1−1)

= Q0 ∗ 10k(0)

= Q0 ∗ 100

= Q0 ∗ 1

= Q0

log10AUpper = log10Q0
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ALower at lim
P→∞

f(x)581

ALower = lim
P→∞

f(x) = Q0 ∗ 10k(e−α∗Q0∗∞−1)

= Q0 ∗ 10k(e−∞−1)

= Q0 ∗ 10k(0−1)

= Q0 ∗ 10k(−1)

= Q0 ∗ 10−k

log10ALower = log10Q0 + (−k)

= log10Q0 − k

= log10AUpper − k

ALower = 10log10AUpper−k
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Differences between Log and Percentage Difference582

Logarithmic Difference583

V1 = 100

V2 = 90

ln(V2

V1
) = −1 ∗ ln(V1

V2
)

ln( 90
100) = −1 ∗ ln(100

90 )

ln(0.9) = −1 ∗ ln(1.11)

−0.1053 = −1 ∗ 0.1053

−0.1053 = −0.1053

V1 = 100

V2 = 50

ln(V2

V1
) = −1 ∗ ln(V1

V2
)

ln( 50
100) = −1 ∗ ln(100

50 )

ln(0.5) = −1 ∗ ln(2)

−0.6931 = −1 ∗ 0.6931

−0.6931 = −0.6931
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Percentage Difference584

V1 = 100

V2 = 90

V2 − V1

V1
≈ −1 ∗ V1 − V2

V2
90− 100

100 ≈ −1 ∗ 100− 90
90

−10
100 ≈ −1 ∗ 10

90
−0.1 ≈ −1 ∗ 0.11

−0.1 ≈ −0.11

V1 = 100

V2 = 50

V2 − V1

V1
≈ −1 ∗ V1 − V2

V2
50− 100

100 ≈ −1 ∗ 100− 50
50

−50
100 ≈ −1 ∗ 50

50
−0.5 ≈ −1 ∗ 1

−0.5 ≈ −1

Note: The examples provided above illustrate how log difference (−0.1053) and percentage585

difference (−0.1) are quite close for small differences. However, the difference between log586

difference (−0.6931) and percentage difference (−0.5) begins to differ considerably with587

larger changes. As such, the two approaches to reflecting relative differences are unlikely to588

be perfectly related outside of optimal conditions.589
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